A Spiking Central Pattern Generator for the control of a simulated
lamprey robot running on SpiNNaker and Loihi neuromorphic boards
- URL: http://arxiv.org/abs/2101.07001v1
- Date: Mon, 18 Jan 2021 11:04:16 GMT
- Title: A Spiking Central Pattern Generator for the control of a simulated
lamprey robot running on SpiNNaker and Loihi neuromorphic boards
- Authors: Emmanouil Angelidis, Emanuel Buchholz, Jonathan Patrick Arreguit
O'Neil, Alexis Roug\`e, Terrence Stewart, Axel von Arnim, Alois Knoll, Auke
Ijspeert
- Abstract summary: We propose a spiking neural network and its implementation on neuromorphic hardware as a means to control a simulated lamprey model.
We show that by modifying the input to the network, which can be provided by sensory information, the robot can be controlled dynamically in direction and pace.
This category of spiking algorithms shows a promising potential to exploit the theoretical advantages of neuromorphic hardware in terms of energy efficiency and computational speed.
- Score: 1.8139771201780368
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Central Pattern Generators (CPGs) models have been long used to investigate
both the neural mechanisms that underlie animal locomotion as well as a tool
for robotic research. In this work we propose a spiking CPG neural network and
its implementation on neuromorphic hardware as a means to control a simulated
lamprey model. To construct our CPG model, we employ the naturally emerging
dynamical systems that arise through the use of recurrent neural populations in
the Neural Engineering Framework (NEF). We define the mathematical formulation
behind our model, which consists of a system of coupled abstract oscillators
modulated by high-level signals, capable of producing a variety of output
gaits. We show that with this mathematical formulation of the Central Pattern
Generator model, the model can be turned into a Spiking Neural Network (SNN)
that can be easily simulated with Nengo, an SNN simulator. The spiking CPG
model is then used to produce the swimming gaits of a simulated lamprey robot
model in various scenarios. We show that by modifying the input to the network,
which can be provided by sensory information, the robot can be controlled
dynamically in direction and pace. The proposed methodology can be generalized
to other types of CPGs suitable for both engineering applications and
scientific research. We test our system on two neuromorphic platforms,
SpiNNaker and Loihi. Finally, we show that this category of spiking algorithms
shows a promising potential to exploit the theoretical advantages of
neuromorphic hardware in terms of energy efficiency and computational speed.
Related papers
- Advancing Spiking Neural Networks for Sequential Modeling with Central Pattern Generators [47.371024581669516]
Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks.
Applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding strategy.
We propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG.
arXiv Detail & Related papers (2024-05-23T09:39:12Z) - Astrocyte Regulated Neuromorphic Central Pattern Generator Control of
Legged Robotic Locomotion [3.7814142008074954]
This paper introduces an astrocyte regulated Spiking Neural Network (SNN)-based CPG for learning locomotion gait through Reward-Modulated STDP for quadruped robots.
The SNN-based CPG is simulated on a multi-object physics simulation platform resulting in the emergence of a trotting gait while running the robot on flat ground.
$23.3times$ computational power savings is observed in comparison to a state-of-the-art reinforcement learning based robot control algorithm.
arXiv Detail & Related papers (2023-12-25T20:33:16Z) - CycleIK: Neuro-inspired Inverse Kinematics [12.29529468290859]
CycleIK is a neuro-robotic approach that wraps two novel neuro-inspired methods for the inverse kinematics (IK) task.
We show how embedding these into a hybrid neuro-genetic IK pipeline allows for further optimization.
arXiv Detail & Related papers (2023-07-21T13:03:27Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Recurrent neural network-based Internal Model Control of unknown
nonlinear stable systems [0.30458514384586394]
Gated Recurrent Neural Networks (RNNs) have become popular tools for learning dynamical systems.
This paper aims to discuss how these networks can be adopted for the synthesis of Internal Model Control (IMC) architectures.
arXiv Detail & Related papers (2021-08-10T11:02:25Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
Spiking Central Pattern Generator generates different locomotion patterns driven by an external stimulus.
The locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input.
arXiv Detail & Related papers (2021-01-24T12:44:38Z) - An Astrocyte-Modulated Neuromorphic Central Pattern Generator for
Hexapod Robot Locomotion on Intel's Loihi [0.0]
Locomotion is a crucial challenge for legged robots that is addressed "effortlessly" by biological networks abundant in nature, named central pattern generators (CPG)
Here, we propose a brain-morphic CPG controler based on a comprehensive spiking neural-astrocytic network that generates two gait patterns for a hexapod robot.
Our results pave the way for scaling this and other approaches towards Loihi-controlled locomotion in autonomous mobile robots.
arXiv Detail & Related papers (2020-06-08T17:35:48Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
We present a framework for implementing central pattern generators with spiking neural networks to obtain closed loop robot control.
We demonstrate the learning of predefined gait patterns, speed control and gait transition on a simulated model of a compliant quadrupedal robot.
arXiv Detail & Related papers (2020-04-09T14:32:49Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.