論文の概要: Model-based actor-critic: GAN (model generator) + DRL (actor-critic) =>
AGI
- arxiv url: http://arxiv.org/abs/2004.04574v9
- Date: Tue, 20 Apr 2021 22:09:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 22:44:50.896346
- Title: Model-based actor-critic: GAN (model generator) + DRL (actor-critic) =>
AGI
- Title(参考訳): モデルベースアクター批判:GAN(モデルジェネレータ)+DRL(アクター批判)→AGI
- Authors: Aras Dargazany
- Abstract要約: 本稿ではアクター批判的(モデルフリー)アーキテクチャに(生成的/予測的)環境モデルを追加することを提案する。
提案するAIモデルは(モデルフリーの)DDPGに似ているため、モデルベースDDPGと呼ばれる。
モデルベースアクター批判におけるDRLとGANは,各タスクを(モデルフリーの)DDPGと同等の性能で解決するために,段階的な目標駆動知性を必要とすることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our effort is toward unifying GAN and DRL algorithms into a unifying AI model
(AGI or general-purpose AI or artificial general intelligence which has
general-purpose applications to: (A) offline learning (of stored data) like GAN
in (un/semi-/fully-)SL setting such as big data analytics (mining) and
visualization; (B) online learning (of real or simulated devices) like DRL in
RL setting (with/out environment reward) such as (real or simulated) robotics
and control; Our core proposal is adding an (generative/predictive) environment
model to the actor-critic (model-free) architecture which results in a
model-based actor-critic architecture with temporal-differencing (TD) error and
an episodic memory. The proposed AI model is similar to (model-free) DDPG and
therefore it's called model-based DDPG. To evaluate it, we compare it with
(model-free) DDPG by applying them both to a variety (wide range) of
independent simulated robotic and control task environments in OpenAI Gym and
Unity Agents. Our initial limited experiments show that DRL and GAN in
model-based actor-critic results in an incremental goal-driven intellignce
required to solve each task with similar performance to (model-free) DDPG. Our
future focus is to investigate the proposed AI model potential to: (A) unify
DRL field inside AI by producing competitive performance compared to the best
of model-based (PlaNet) and model-free (D4PG) approaches; (B) bridge the gap
between AI and robotics communities by solving the important problem of reward
engineering with learning the reward function by demonstration.
- Abstract(参考訳): Our effort is toward unifying GAN and DRL algorithms into a unifying AI model (AGI or general-purpose AI or artificial general intelligence which has general-purpose applications to: (A) offline learning (of stored data) like GAN in (un/semi-/fully-)SL setting such as big data analytics (mining) and visualization; (B) online learning (of real or simulated devices) like DRL in RL setting (with/out environment reward) such as (real or simulated) robotics and control; Our core proposal is adding an (generative/predictive) environment model to the actor-critic (model-free) architecture which results in a model-based actor-critic architecture with temporal-differencing (TD) error and an episodic memory.
提案するAIモデルは(モデルフリーの)DDPGに似ているため、モデルベースDDPGと呼ばれる。
これを評価するために,OpenAI Gym と Unity Agents の独立したロボット・制御タスク環境の多種多様(広範囲)に適用し,DDPG と比較した。
モデルベースアクター批判におけるDRLとGANは,各タスクを(モデルフリーの)DDPGと同等の性能で解決するために,段階的な目標駆動知性を必要とすることを示した。
a) モデルベース(プラネット)とモデルフリー(d4pg)のアプローチと比較して、競争力のあるパフォーマンスを生み出すことによって、ai内部のdrlフィールドを統一すること(b) デモによって報奨機能を学ぶことで、報奨工学の重要な問題を解決して、aiとロボティクスコミュニティの間のギャップを埋めること。
関連論文リスト
- Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AIは、サイバースペースと物理空間のギャップを埋める、急速に進歩する分野だ。
VEANETでは、組み込まれたAIツインが車載AIアシスタントとして機能し、自律運転をサポートするさまざまなタスクを実行する。
論文 参考訳(メタデータ) (2024-10-02T02:20:42Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AIベースのアプリケーションは、スケジューリングや電力制御などの機能を実行するために、インテリジェントコントローラにデプロイされる。
コンテキストとAIモデルのパラメータのマッピングは、ゼロショット方式で理想的に行われる。
本稿では,AMSマッピングのオンライン最適化のための一般的な手法を紹介する。
論文 参考訳(メタデータ) (2024-06-22T11:17:50Z) - Model Callers for Transforming Predictive and Generative AI Applications [2.7195102129095003]
モデル呼び出し(model caller)と呼ばれる新しいソフトウェア抽象化を導入する。
モデル呼び出しは、AIとMLモデル呼び出しの仲介役として機能する。
我々は、モデル呼び出しのためのPythonライブラリのプロトタイプをリリースした。
論文 参考訳(メタデータ) (2024-04-17T12:21:06Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
近年,モデルに基づく強化学習アルゴリズムは視覚入力環境において顕著な有効性を示している。
本稿では,強力なモデリングと生成機能を組み合わせた効率的な世界モデルアーキテクチャであるTransformer-based wORld Model (STORM)を紹介する。
Stormは、Atari 100$kベンチマークで平均126.7%の人的パフォーマンスを達成し、最先端のメソッドの中で新しい記録を樹立した。
論文 参考訳(メタデータ) (2023-10-14T16:42:02Z) - Physics-Informed Model-Based Reinforcement Learning [19.01626581411011]
従来の強化学習アルゴリズムの欠点の1つは、サンプル効率の低さである。
我々は、その遷移力学と報酬関数のモデルを学び、それを使って想像軌道を生成し、それらをバックプロパゲーションしてポリシーを更新する。
モデルベースRLでは,初期条件に敏感な環境において,モデル精度が重要となることを示す。
また、挑戦的な環境では、物理インフォームドモデルベースRLは最先端のモデルフリーRLアルゴリズムよりも平均回帰性が高いことを示す。
論文 参考訳(メタデータ) (2022-12-05T11:26:10Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
本稿では,SAM-RL と呼ばれる感性認識モデルに基づく強化学習システムを提案する。
SAM-RLは、センサーを意識した学習パイプラインによって、ロボットがタスクプロセスを監視するための情報的視点を選択することを可能にする。
我々は,ロボット組立,ツール操作,変形可能なオブジェクト操作という3つの操作タスクを達成するための実世界の実験に,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2022-10-27T05:30:43Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
自己整合性を維持しつつ高いリターンを達成するために,潜在空間モデルとポリシーを協調的に最適化する単一目的を提案する。
得られたアルゴリズムは, モデルベースおよびモデルフリーRL手法のサンプル効率に適合するか, 改善することを示した。
論文 参考訳(メタデータ) (2022-09-18T03:51:58Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Application of Federated Learning in Building a Robust COVID-19 Chest
X-ray Classification Model [0.0]
フェデレートラーニング(FL)は、すべてのデータを中央サーバに移動させることなく、AIモデルの一般化を支援する。
我々は、新型コロナウイルスの有無を予測するバイナリ分類問題を解決するために、ディープラーニングモデルを訓練した。
論文 参考訳(メタデータ) (2022-04-22T05:21:50Z) - Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow [14.422129911404472]
Bellmanはこのギャップを埋めることを目指しており、モデルベースのRLツールボックスを初めて完全に設計し、テストした。
我々のモジュラーアプローチは、幅広い環境モデルと、最先端アルゴリズムを復元する汎用モデルベースのエージェントクラスを組み合わせることができる。
論文 参考訳(メタデータ) (2021-03-26T11:32:27Z) - Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models [0.0]
強化学習(RL)は、AI研究の最も活発な分野の1つです。
開発方法論はまだ遅れており、RLアプリケーションの開発を促進するための標準APIが不足している。
多目的エージェントベースのモデルと派生した単一目的強化学習環境の分離開発と保守のためのワークフローとツールを提示する。
論文 参考訳(メタデータ) (2021-02-19T09:25:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。