論文の概要: Model Callers for Transforming Predictive and Generative AI Applications
- arxiv url: http://arxiv.org/abs/2406.15377v1
- Date: Wed, 17 Apr 2024 12:21:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 07:11:08.819659
- Title: Model Callers for Transforming Predictive and Generative AI Applications
- Title(参考訳): 予測型および生成型AIアプリケーション変換のためのモデルキャラ
- Authors: Mukesh Dalal,
- Abstract要約: モデル呼び出し(model caller)と呼ばれる新しいソフトウェア抽象化を導入する。
モデル呼び出しは、AIとMLモデル呼び出しの仲介役として機能する。
我々は、モデル呼び出しのためのPythonライブラリのプロトタイプをリリースした。
- 参考スコア(独自算出の注目度): 2.7195102129095003
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a novel software abstraction termed "model caller," acting as an intermediary for AI and ML model calling, advocating its transformative utility beyond existing model-serving frameworks. This abstraction offers multiple advantages: enhanced accuracy and reduced latency in model predictions, superior monitoring and observability of models, more streamlined AI system architectures, simplified AI development and management processes, and improved collaboration and accountability across AI/ML/Data Science, software, data, and operations teams. Model callers are valuable for both creators and users of models within both predictive and generative AI applications. Additionally, we have developed and released a prototype Python library for model callers, accessible for installation via pip or for download from GitHub.
- Abstract(参考訳): 我々は、AIおよびMLモデル呼び出しの仲介役として機能し、既存のモデル提供フレームワークを超えて、そのトランスフォーメーションユーティリティーを提唱する「モデル呼び出し」と呼ばれる新しいソフトウェア抽象化を導入する。
この抽象化には、モデルの予測における精度の向上とレイテンシの低減、モデルの監視と可観測性の向上、AIシステムアーキテクチャの合理化、AI開発と管理プロセスの簡略化、AI/ML/データサイエンス、ソフトウェア、データ、運用チーム間のコラボレーションと説明責任の改善など、さまざまなメリットがある。
モデル呼び出しは、予測AIアプリケーションと生成AIアプリケーションの両方において、モデルの作成者とユーザの両方にとって価値がある。
さらに、モデル呼び出しのためのPythonライブラリのプロトタイプを開発し、リリースしました。
関連論文リスト
- xLAM: A Family of Large Action Models to Empower AI Agent Systems [111.5719694445345]
AIエージェントタスク用に設計された大規模なアクションモデルであるxLAMをリリースする。
xLAMは、複数のエージェント能力ベンチマークで例外的なパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-05T03:22:22Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
統合データモデル共同開発に適した新しいサンドボックススイートを提案する。
このサンドボックスは包括的な実験プラットフォームを提供し、データとモデルの両方の迅速なイテレーションと洞察駆動による改善を可能にする。
また、徹底的なベンチマークから得られた実りある洞察を明らかにし、データ品質、多様性、モデル行動の間の重要な相互作用に光を当てています。
論文 参考訳(メタデータ) (2024-07-16T14:40:07Z) - ModelGPT: Unleashing LLM's Capabilities for Tailored Model Generation [35.160964210941955]
本稿では,ユーザが提供するデータやタスク記述に適したAIモデルを決定・生成するフレームワークであるModelGPTを提案する。
ユーザの要求に応じて、ModelGPTは、以前のパラダイムよりも少なくとも270倍高速に、調整済みのモデルを提供することができる。
論文 参考訳(メタデータ) (2024-02-18T11:24:34Z) - FlexModel: A Framework for Interpretability of Distributed Large
Language Models [0.0]
マルチGPUとマルチノード構成に分散したモデルを扱うための,合理化されたインターフェースを提供するソフトウェアパッケージであるFlexModelを紹介する。
このライブラリは既存のモデル配布ライブラリと互換性があり、PyTorchモデルをカプセル化している。
ユーザ登録可能なHookFunctionを公開して,分散モデル内部との直接的なインタラクションを容易にする。
論文 参考訳(メタデータ) (2023-12-05T21:19:33Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
モデル共有AI(AIMS)は、コラボレーティブモデル開発、モデル前駆者追跡、モデルデプロイメントを合理化するように設計された、使いやすいMLOpsプラットフォームである。
AIMSは、協調的なプロジェクト空間と、見当たらない評価データに基づいてモデル提出をランク付けする標準化されたモデル評価プロセスを備えている。
AIMSでは、Scikit-Learn、Keras、PyTorch、ONNXで構築されたMLモデルを、ライブREST APIや自動生成されたWebアプリにデプロイすることができる。
論文 参考訳(メタデータ) (2023-09-27T15:24:39Z) - ModelScope-Agent: Building Your Customizable Agent System with
Open-source Large Language Models [74.64651681052628]
本稿では,オープンソースのLCMをコントローラとする実世界のアプリケーションのためのカスタマイズ可能なエージェントフレームワークであるModelScope-Agentを紹介する。
ユーザフレンドリーなシステムライブラリを提供し、カスタマイズ可能なエンジン設計により、複数のオープンソースLLMでモデルトレーニングをサポートする。
ツール使用データ収集、ツール検索、ツール登録、メモリ制御、カスタマイズされたモデルトレーニング、評価にまたがる包括的なフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-09-02T16:50:30Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
モデルの信号認識性を高めるためのデータ駆動型手法を提案する。
コード複雑性のSE概念とカリキュラム学習のAIテクニックを組み合わせる。
モデル信号認識における最大4.8倍の改善を実現している。
論文 参考訳(メタデータ) (2021-11-10T17:58:18Z) - A Model-Driven Engineering Approach to Machine Learning and Software
Modeling [0.5156484100374059]
モデルは、ソフトウェア工学(SE)と人工知能(AI)のコミュニティで使われている。
主な焦点はIoT(Internet of Things)とCPS(Smart Cyber-Physical Systems)のユースケースである。
論文 参考訳(メタデータ) (2021-07-06T15:50:50Z) - Model-based actor-critic: GAN (model generator) + DRL (actor-critic) =>
AGI [0.0]
本稿ではアクター批判的(モデルフリー)アーキテクチャに(生成的/予測的)環境モデルを追加することを提案する。
提案するAIモデルは(モデルフリーの)DDPGに似ているため、モデルベースDDPGと呼ばれる。
モデルベースアクター批判におけるDRLとGANは,各タスクを(モデルフリーの)DDPGと同等の性能で解決するために,段階的な目標駆動知性を必要とすることを示した。
論文 参考訳(メタデータ) (2020-04-04T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。