Nonnegativity-Enforced Gaussian Process Regression
- URL: http://arxiv.org/abs/2004.04632v1
- Date: Tue, 7 Apr 2020 00:43:46 GMT
- Title: Nonnegativity-Enforced Gaussian Process Regression
- Authors: Andrew Pensoneault and Xiu Yang and Xueyu Zhu
- Abstract summary: We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework.
This new approach reduces the variance in the resulting GP model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Process (GP) regression is a flexible non-parametric approach to
approximate complex models. In many cases, these models correspond to processes
with bounded physical properties. Standard GP regression typically results in a
proxy model which is unbounded for all temporal or spacial points, and thus
leaves the possibility of taking on infeasible values. We propose an approach
to enforce the physical constraints in a probabilistic way under the GP
regression framework. In addition, this new approach reduces the variance in
the resulting GP model.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Gaussian Process Regression with Soft Inequality and Monotonicity Constraints [0.0]
We introduce a new GP method that enforces the physical constraints in a probabilistic manner.
This GP model is trained by the quantum-inspired Hamiltonian Monte Carlo (QHMC)
arXiv Detail & Related papers (2024-04-03T17:09:25Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Non-Gaussian Process Regression [0.0]
We extend the GP framework into a new class of time-changed GPs that allow for straightforward modelling of heavy-tailed non-Gaussian behaviours.
We present Markov chain Monte Carlo inference procedures for this model and demonstrate the potential benefits.
arXiv Detail & Related papers (2022-09-07T13:08:22Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - Robust Gaussian Process Regression Based on Iterative Trimming [6.912744078749024]
This paper presents a new robust GP regression algorithm that iteratively trims the most extreme data points.
It can greatly improve the model accuracy for contaminated data even in the presence of extreme or abundant outliers.
As a practical example in the astrophysical study, we show that this method can precisely determine the main-sequence ridge line in the color-magnitude diagram of star clusters.
arXiv Detail & Related papers (2020-11-22T16:43:35Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Transport Gaussian Processes for Regression [0.22843885788439797]
We propose a methodology to construct processes, which include GPs, warped GPs, Student-t processes and several others.
Our approach is inspired by layers-based models, where each proposed layer changes a specific property over the generated process.
We validate the proposed model through experiments with real-world data.
arXiv Detail & Related papers (2020-01-30T17:44:21Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.