Parallel/distributed implementation of cellular training for generative
adversarial neural networks
- URL: http://arxiv.org/abs/2004.04633v3
- Date: Mon, 3 Aug 2020 17:55:24 GMT
- Title: Parallel/distributed implementation of cellular training for generative
adversarial neural networks
- Authors: Emiliano Perez, Sergio Nesmachnow, Jamal Toutouh, Erik Hemberg,
Una-May O'Reilly
- Abstract summary: Generative adversarial networks (GANs) are widely used to learn generative models.
This article presents a parallel/distributed implementation of a cellular competitive coevolutionary method to train two populations of GANs.
- Score: 7.504722086511921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) are widely used to learn generative
models. GANs consist of two networks, a generator and a discriminator, that
apply adversarial learning to optimize their parameters. This article presents
a parallel/distributed implementation of a cellular competitive coevolutionary
method to train two populations of GANs. A distributed memory parallel
implementation is proposed for execution in high performance/supercomputing
centers. Efficient results are reported on addressing the generation of
handwritten digits (MNIST dataset samples). Moreover, the proposed
implementation is able to reduce the training times and scale properly when
considering different grid sizes for training.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Learning from Data with Noisy Labels Using Temporal Self-Ensemble [11.245833546360386]
Deep neural networks (DNNs) have an enormous capacity to memorize noisy labels.
Current state-of-the-art methods present a co-training scheme that trains dual networks using samples associated with small losses.
We propose a simple yet effective robust training scheme that operates by training only a single network.
arXiv Detail & Related papers (2022-07-21T08:16:31Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
State-of-the-art deep neural networks (DNNs) have significant computational and data management requirements.
Sparsification and pruning methods are shown to be effective in removing a large fraction of connections in DNNs.
The resulting sparse networks present unique challenges to further improve the computational efficiency of training and inference in deep learning.
arXiv Detail & Related papers (2021-04-23T20:05:52Z) - Training Generative Adversarial Networks in One Stage [58.983325666852856]
We introduce a general training scheme that enables training GANs efficiently in only one stage.
We show that the proposed method is readily applicable to other adversarial-training scenarios, such as data-free knowledge distillation.
arXiv Detail & Related papers (2021-02-28T09:03:39Z) - Attentive Gaussian processes for probabilistic time-series generation [4.94950858749529]
We propose a computationally efficient attention-based network combined with the Gaussian process regression to generate real-valued sequence.
We develop a block-wise training algorithm to allow mini-batch training of the network while the GP is trained using full-batch.
The algorithm has been proved to converge and shows comparable, if not better, quality of the found solution.
arXiv Detail & Related papers (2021-02-10T01:19:15Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Restructuring, Pruning, and Adjustment of Deep Models for Parallel
Distributed Inference [15.720414948573753]
We consider the parallel implementation of an already-trained deep model on multiple processing nodes (a.k.a. workers)
We propose RePurpose, a layer-wise model restructuring and pruning technique that guarantees the performance of the overall parallelized model.
We show that, compared to the existing methods, RePurpose significantly improves the efficiency of the distributed inference via parallel implementation.
arXiv Detail & Related papers (2020-08-19T06:44:41Z) - Generative Adversarial Trainer: Defense to Adversarial Perturbations
with GAN [13.561553183983774]
We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network.
The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image.
Our adversarial training framework efficiently reduces overfitting and outperforms other regularization methods such as Dropout.
arXiv Detail & Related papers (2017-05-09T15:30:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.