論文の概要: Graph Highway Networks
- arxiv url: http://arxiv.org/abs/2004.04635v1
- Date: Thu, 9 Apr 2020 16:26:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 02:10:26.851397
- Title: Graph Highway Networks
- Title(参考訳): グラフハイウェイネットワーク
- Authors: Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M.Jose
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、グラフ表現の有効性と効率性から、グラフ表現の学習に広く利用されている。
彼らは、多くの層が積み重ねられたとき、学習された表現が類似したベクトルに収束するという悪名高い過度に滑らかな問題に悩まされる。
本稿では,GCN学習プロセスにおける均一性と不均一性との間のトレードオフのバランスをとるため,ゲーティングユニットを利用したグラフハイウェイネットワークを提案する。
- 参考スコア(独自算出の注目度): 77.38665506495553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolution Networks (GCN) are widely used in learning graph
representations due to their effectiveness and efficiency. However, they suffer
from the notorious over-smoothing problem, in which the learned representations
of densely connected nodes converge to alike vectors when many (>3) graph
convolutional layers are stacked. In this paper, we argue that
there-normalization trick used in GCN leads to overly homogeneous information
propagation, which is the source of over-smoothing. To address this problem, we
propose Graph Highway Networks(GHNet) which utilize gating units to
automatically balance the trade-off between homogeneity and heterogeneity in
the GCN learning process. The gating units serve as direct highways to maintain
heterogeneous information from the node itself after feature propagation. This
design enables GHNet to achieve much larger receptive fields per node without
over-smoothing and thus access to more of the graph connectivity information.
Experimental results on benchmark datasets demonstrate the superior performance
of GHNet over GCN and related models.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)はグラフ表現の有効性と効率性から広く用いられている。
しかし、多くの(>3)グラフ畳み込み層が積み重ねられたときに、密結合されたノードの学習された表現が類似のベクトルに収束する、悪名高い過剰スムーシング問題に苦しむ。
本稿では,GCNにおける正規化手法が,過度に均質な情報伝達をもたらすことを論じる。
本稿では,GCN学習プロセスにおける均一性と不均一性との間のトレードオフを自動的にバランスさせるため,ゲーティングユニットを用いたグラフハイウェイネットワーク(GHNet)を提案する。
ゲーティングユニットは、特徴伝播後にノード自身から異種情報を維持するための直接ハイウェイとして機能する。
この設計により、GHNetはオーバースムーシングなしでノード毎の受信フィールドをはるかに大きくすることができ、グラフ接続情報にアクセスできるようになる。
ベンチマークデータセットの実験結果は、GCNおよび関連するモデルよりもGHNetの方が優れた性能を示す。
関連論文リスト
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
グラフニューラルネットワーク(GNN)は、従来、非指向グラフ上の拡散に似たメッセージパッシング機構を採用している。
私たちのキーとなる洞察は、ファジィエッジ方向をグラフのエッジに割り当てることです。
ファジィエッジを持つグラフを学習するためのフレームワークとして,Continuous Edge Direction (CoED) GNNを提案する。
論文 参考訳(メタデータ) (2024-10-18T01:34:35Z) - Transfer Entropy in Graph Convolutional Neural Networks [0.0]
グラフ畳み込みネットワーク(Graph Convolutional Networks、GCN)は、グラフ上に畳み込みを適用するグラフニューラルネットワークである。
本研究は,GCNに関する2つの重要な課題に対処する。
オーバースムーシング(Oversmoothing)とは、繰り返しの集約の結果、ノードの識別能力が低下することである。
本稿では,2つの時間変化ノード間の情報転送量を測定するTransfer Entropy (TE) に基づくGCNにおけるこれらの課題に対処するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-06-08T20:09:17Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - An Uncoupled Training Architecture for Large Graph Learning [20.784230322205232]
グラフデータをグリッドライクなデータに埋め込むための、柔軟なアンカップリングトレーニングフレームワークであるNode2Gridsを紹介します。
各ノードの影響を次々にランク付けすることで、Node2Gridsは最も影響力のある1階と、中央ノードの融合情報を持つ2階の隣人を選択する。
下流タスクの効率をさらに向上するために、単純なCNNベースのニューラルネットワークを使用して、マッピングされたグリッドのようなデータから重要な情報をキャプチャする。
論文 参考訳(メタデータ) (2020-03-21T11:49:16Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。