論文の概要: Scalable Active Learning for Object Detection
- arxiv url: http://arxiv.org/abs/2004.04699v1
- Date: Thu, 9 Apr 2020 17:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 03:02:18.708399
- Title: Scalable Active Learning for Object Detection
- Title(参考訳): オブジェクト検出のためのスケーラブル能動学習
- Authors: Elmar Haussmann, Michele Fenzi, Kashyap Chitta, Jan Ivanecky, Hanson
Xu, Donna Roy, Akshita Mittel, Nicolas Koumchatzky, Clement Farabet, Jose M.
Alvarez
- Abstract要約: アクティブラーニングは教師付き学習手法のデータ効率を向上させる強力な手法である。
自動運転の分野におけるアクティブな学習のためのスケーラブルな生産システムを構築しました。
- 参考スコア(独自算出の注目度): 20.99502312184771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks trained in a fully supervised fashion are the dominant
technology in perception-based autonomous driving systems. While collecting
large amounts of unlabeled data is already a major undertaking, only a subset
of it can be labeled by humans due to the effort needed for high-quality
annotation. Therefore, finding the right data to label has become a key
challenge. Active learning is a powerful technique to improve data efficiency
for supervised learning methods, as it aims at selecting the smallest possible
training set to reach a required performance. We have built a scalable
production system for active learning in the domain of autonomous driving. In
this paper, we describe the resulting high-level design, sketch some of the
challenges and their solutions, present our current results at scale, and
briefly describe the open problems and future directions.
- Abstract(参考訳): 完全に監督された方法で訓練されたディープニューラルネットワークは、知覚ベースの自動運転システムにおいて支配的な技術である。
大量のラベルのないデータを収集することは、すでに大きな仕事だが、高品質なアノテーションに必要な労力のために、そのサブセットだけが人間によってラベル付けされる。
したがって、ラベルに適切なデータを見つけることが重要な課題となっている。
アクティブラーニングは、必要なパフォーマンスに達する最小のトレーニングセットを選択することを目的として、教師付き学習方法のデータ効率を向上させる強力な技術である。
自動運転分野におけるアクティブな学習のためのスケーラブルな生産システムを構築しました。
本稿では,ハイレベル設計の結果を概説し,課題とその解決策をスケッチし,現在の結果を大規模に提示し,オープンな問題と今後の方向性を簡潔に述べる。
関連論文リスト
- A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
本稿では,点雲のラベル効率学習に関する包括的調査を行う。
本稿では,ラベルの種類によって提供されるデータ前提条件に基づいて,ラベル効率のよい学習手法を整理する分類法を提案する。
それぞれのアプローチについて、問題設定の概要と、関連する進展と課題を示す広範な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-05-31T12:54:51Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - ALANNO: An Active Learning Annotation System for Mortals [0.0]
ALANNOは、アクティブラーニングを利用したNLPタスクのためのオープンソースのアノテーションシステムである。
アクティブな学習システムを展開する上での実践的な課題に焦点をあてる。
我々は、多くのアクティブな学習方法と基盤となる機械学習モデルで、このシステムをサポートしています。
論文 参考訳(メタデータ) (2022-11-11T14:19:41Z) - Understanding the World Through Action [91.3755431537592]
ラベルのないデータを利用するための汎用的で原則的で強力なフレームワークは、強化学習から導き出すことができると私は主張する。
このような手順が、下流の潜在的なタスクとどのように密接に一致しているかについて論じます。
論文 参考訳(メタデータ) (2021-10-24T22:33:52Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
ロボット操作のための6つのオフライン学習アルゴリズムについて広範な研究を行う。
我々の研究は、オフラインの人間のデータから学習する際の最も重要な課題を分析します。
人間のデータセットから学ぶ機会を強調します。
論文 参考訳(メタデータ) (2021-08-06T20:48:30Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
文献では、Deep Convolutional Neural Networks (DCNNs)に基づく多数のオブジェクト検出方法が提案されている。
これらの手法はロボティクスに重要な制限がある:オフラインデータのみに学習するとバイアスが発生し、新しいタスクへの適応を防ぐことができる。
本研究では,弱い教師付き学習がこれらの問題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2020-12-28T16:36:11Z) - Sense and Learn: Self-Supervision for Omnipresent Sensors [9.442811508809994]
我々は、生の知覚データから表現や特徴学習のためのSense and Learnというフレームワークを提案する。
これは、面倒なラベル付けプロセスに人間が関与することなく、注釈のないデータから、高レベルで広範囲に有用な特徴を学習できる補助的なタスクで構成されている。
提案手法は、教師付きアプローチと競合する結果を達成し、ネットワークを微調整し、ほとんどの場合、下流タスクを学習することでギャップを埋める。
論文 参考訳(メタデータ) (2020-09-28T11:57:43Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
移動学習のための自己教師付き事前学習は、ラベルのないデータを用いて最先端の結果を改善する技術として、ますます人気が高まっている。
本稿では,自己指導型学習と伝達学習の分類学の概要を述べるとともに,各領域にまたがる事前学習タスクを設計するためのいくつかの顕著な手法を強調した。
論文 参考訳(メタデータ) (2020-07-01T22:55:48Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。