論文の概要: Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks
- arxiv url: http://arxiv.org/abs/2004.04717v2
- Date: Fri, 30 Oct 2020 16:54:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 02:09:12.852877
- Title: Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks
- Title(参考訳): 指数平滑なリカレントニューラルネットワークによる産業予測
- Authors: Matthew F Dixon
- Abstract要約: 本稿では,産業応用における非定常力学系のモデル化に好適な指数的スムーズなリカレントニューラルネットワーク(RNN)のクラスを提案する。
指数スムーズなRNNの電力負荷、気象データ、株価予測への応用は、多段階時系列予測における隠れ状態の指数スムーズ化の有効性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series modeling has entered an era of unprecedented growth in the size
and complexity of data which require new modeling approaches. While many new
general purpose machine learning approaches have emerged, they remain poorly
understand and irreconcilable with more traditional statistical modeling
approaches. We present a general class of exponential smoothed recurrent neural
networks (RNNs) which are well suited to modeling non-stationary dynamical
systems arising in industrial applications. In particular, we analyze their
capacity to characterize the non-linear partial autocorrelation structure of
time series and directly capture dynamic effects such as seasonality and
trends. Application of exponentially smoothed RNNs to forecasting electricity
load, weather data, and stock prices highlight the efficacy of exponential
smoothing of the hidden state for multi-step time series forecasting. The
results also suggest that popular, but more complicated neural network
architectures originally designed for speech processing, such as LSTMs and
GRUs, are likely over-engineered for industrial forecasting and light-weight
exponentially smoothed architectures, trained in a fraction of the time,
capture the salient features while being superior and more robust than simple
RNNs and ARIMA models. Additionally uncertainty quantification of the
exponential smoothed recurrent neural networks, provided by Bayesian
estimation, is shown to provide improved coverage.
- Abstract(参考訳): 時系列モデリングは、新しいモデリングアプローチを必要とするデータのサイズと複雑さが前例のない成長を遂げた時代に入った。
多くの新しい汎用機械学習アプローチが登場したが、従来の統計モデリングアプローチとあまり理解されず、相容れないままである。
本稿では,産業応用における非定常力学系のモデル化に好適な指数スムーズリカレントニューラルネットワーク(RNN)の一般クラスを提案する。
特に,時系列の非線形部分自己相関構造を特徴付ける能力を分析し,季節性や傾向といった動的効果を直接捉えた。
指数スムーズなRNNの電力負荷、気象データ、株価予測への応用は、多段階時系列予測における隠れ状態の指数スムーズ化の有効性を強調している。
LSTMやGRUなどの音声処理用に設計された一般的な、しかしより複雑なニューラルネットワークアーキテクチャは、工業的な予測や軽量で指数関数的にスムーズなアーキテクチャのために過度に設計され、わずかな時間で訓練され、単純なRNNやARIMAモデルよりも優れ、堅牢である。
さらに,ベイズ推定による指数型平滑化リカレントニューラルネットワークの不確かさの定量化により,精度が向上した。
関連論文リスト
- Deconstructing Recurrence, Attention, and Gating: Investigating the transferability of Transformers and Gated Recurrent Neural Networks in forecasting of dynamical systems [0.0]
我々は、RNNにおけるゲーティングと再発、トランスフォーマーにおける注意機構など、最も強力なニューラルネットワークアーキテクチャの主要なアーキテクチャコンポーネントを分解する。
重要な発見は、ニューラルゲーティングとアテンションは、ほとんどのタスクにおいて標準RNNの正確性を改善する一方で、トランスフォーマーにおける再発の概念の追加は有害である。
論文 参考訳(メタデータ) (2024-10-03T16:41:51Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
連続学習に基づく非教師付きリカレントスパイキングニューラルネットワークモデル(CLURSNN)を提案する。
CLURSNNは、ランダム遅延埋め込み(Random Delay Embedding)を使用して基盤となる動的システムを再構築することで、オンライン予測を行う。
提案手法は,進化するロレンツ63力学系を予測する際に,最先端のDNNモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-10T16:18:37Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - ONE-NAS: An Online NeuroEvolution based Neural Architecture Search for
Time Series Forecasting [3.3758186776249928]
この研究は、Online NeuroEvolution based Neural Architecture Search (ONE-NAS)アルゴリズムを提示する。
ONE-NASは、オンライン環境で新しいリカレントニューラルネットワーク(RNN)を自動設計し、訓練することのできる、最初のニューラルネットワーク検索アルゴリズムである。
従来の統計時系列予測よりも優れており、ナイーブ、移動平均、指数的平滑化などが挙げられる。
論文 参考訳(メタデータ) (2022-02-27T22:58:32Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
我々は、時系列予測のための繰り返しニューラルネットワークの適応を提案するために、深部生成モデルと状態空間モデルの概念の進歩を活用する。
私たちのモデルは、すべての関連情報が隠された状態でカプセル化されるリカレントニューラルネットワークのアーキテクチャ的な動作を保ち、この柔軟性により、モデルはシーケンシャルモデリングのために任意のディープアーキテクチャに簡単に統合できます。
論文 参考訳(メタデータ) (2021-04-26T01:43:43Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。