論文の概要: Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction
- arxiv url: http://arxiv.org/abs/2304.04697v2
- Date: Wed, 31 May 2023 21:17:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 23:43:58.814807
- Title: Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction
- Title(参考訳): オンライン教師なし時系列予測のための脳インスパイクスパイクニューラルネットワーク
- Authors: Biswadeep Chakraborty, Saibal Mukhopadhyay
- Abstract要約: 連続学習に基づく非教師付きリカレントスパイキングニューラルネットワークモデル(CLURSNN)を提案する。
CLURSNNは、ランダム遅延埋め込み(Random Delay Embedding)を使用して基盤となる動的システムを再構築することで、オンライン予測を行う。
提案手法は,進化するロレンツ63力学系を予測する際に,最先端のDNNモデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 13.521272923545409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy and data-efficient online time series prediction for predicting
evolving dynamical systems are critical in several fields, especially edge AI
applications that need to update continuously based on streaming data. However,
current DNN-based supervised online learning models require a large amount of
training data and cannot quickly adapt when the underlying system changes.
Moreover, these models require continuous retraining with incoming data making
them highly inefficient. To solve these issues, we present a novel Continuous
Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN),
trained with spike timing dependent plasticity (STDP). CLURSNN makes online
predictions by reconstructing the underlying dynamical system using Random
Delay Embedding by measuring the membrane potential of neurons in the recurrent
layer of the RSNN with the highest betweenness centrality. We also use
topological data analysis to propose a novel methodology using the Wasserstein
Distance between the persistence homologies of the predicted and observed time
series as a loss function. We show that the proposed online time series
prediction methodology outperforms state-of-the-art DNN models when predicting
an evolving Lorenz63 dynamical system.
- Abstract(参考訳): 進化する動的システムを予測するためのエネルギーとデータ効率のオンライン時系列予測は、いくつかの分野、特にストリーミングデータに基づいて継続的に更新する必要があるエッジAIアプリケーションにおいて重要である。
しかし、現在のDNNベースの教師付きオンライン学習モデルでは、大量のトレーニングデータが必要であり、基礎となるシステムが変化しても迅速に適応できない。
さらに、これらのモデルは、入ってくるデータと連続的なリトレーニングを必要とし、非常に非効率である。
これらの問題を解決するために, スパイクタイミング依存型可塑性(STDP)を訓練した, 連続学習に基づく教師なしリカレントスパイクニューラルネットワークモデル(CLURSNN)を提案する。
CLURSNNは、RSNNのリカレント層におけるニューロンの膜電位を最大間隔で測定することで、ランダム遅延埋め込みを用いて基礎となる力学系を再構築することで、オンライン予測を行う。
また、トポロジカルデータ解析を用いて、予測された時系列と観測された時系列の永続ホモロジー間のワッサーシュタイン距離を損失関数として用いた新しい手法を提案する。
提案手法は,進化するロレンツ63力学系を予測する際に,最先端のDNNモデルよりも優れていることを示す。
関連論文リスト
- How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - ONE-NAS: An Online NeuroEvolution based Neural Architecture Search for
Time Series Forecasting [3.3758186776249928]
この研究は、Online NeuroEvolution based Neural Architecture Search (ONE-NAS)アルゴリズムを提示する。
ONE-NASは、オンライン環境で新しいリカレントニューラルネットワーク(RNN)を自動設計し、訓練することのできる、最初のニューラルネットワーク検索アルゴリズムである。
従来の統計時系列予測よりも優れており、ナイーブ、移動平均、指数的平滑化などが挙げられる。
論文 参考訳(メタデータ) (2022-02-27T22:58:32Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
本稿では,散発データにおける複数の時間的特徴をモデル化するための新しい深層学習モデルを提案する。
提案モデルはCARRNNと呼ばれ、時間ラグによって変調されたニューラルネットワークを用いてエンドツーエンドにトレーニング可能な一般化された離散時間自己回帰モデルを使用する。
アルツハイマー病進行モデルおよび集中治療単位(ICU)死亡率予測のためのデータを用いて,多変量時系列回帰タスクに適用した。
論文 参考訳(メタデータ) (2021-04-08T12:43:44Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks [0.0]
本稿では,産業応用における非定常力学系のモデル化に好適な指数的スムーズなリカレントニューラルネットワーク(RNN)のクラスを提案する。
指数スムーズなRNNの電力負荷、気象データ、株価予測への応用は、多段階時系列予測における隠れ状態の指数スムーズ化の有効性を強調している。
論文 参考訳(メタデータ) (2020-04-09T17:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。