論文の概要: Towards Federated Learning With Byzantine-Robust Client Weighting
- arxiv url: http://arxiv.org/abs/2004.04986v2
- Date: Tue, 18 May 2021 08:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 20:36:43.406177
- Title: Towards Federated Learning With Byzantine-Robust Client Weighting
- Title(参考訳): Byzantine-Robust Client Weighting によるフェデレーションラーニング
- Authors: Amit Portnoy, Yoav Tirosh, and Danny Hendler
- Abstract要約: フェデレート学習のための実践的な重み付けに基づく事前処理手法を提案する。
本手法は, モデル品質とビザンツのロバスト性とのバランスが良好であることを示す。
- 参考スコア(独自算出の注目度): 2.294014185517203
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) is a distributed machine learning paradigm where data
is distributed among clients who collaboratively train a model in a computation
process coordinated by a central server. By assigning a weight to each client
based on the proportion of data instances it possesses, the rate of convergence
to an accurate joint model can be greatly accelerated. Some previous works
studied FL in a Byzantine setting, in which a fraction of the clients may send
arbitrary or even malicious information regarding their model. However, these
works either ignore the issue of data unbalancedness altogether or assume that
client weights are apriori known to the server, whereas, in practice, it is
likely that weights will be reported to the server by the clients themselves
and therefore cannot be relied upon. We address this issue for the first time
by proposing a practical weight-truncation-based preprocessing method and
demonstrating empirically that it is able to strike a good balance between
model quality and Byzantine robustness. We also establish analytically that our
method can be applied to a randomly selected sample of client weights.
- Abstract(参考訳): フェデレーション学習(federated learning, fl)は、中央サーバが協調する計算プロセスにおいて、モデルを協調的にトレーニングするクライアント間でデータを分散する分散機械学習パラダイムである。
保有するデータインスタンスの割合に基づいて各クライアントに重みを割り当てることにより、正確なジョイントモデルへの収束率を大幅に向上させることができる。
以前のいくつかの作品は、一部のクライアントがモデルに関する任意の、あるいは悪意のある情報を送信できるビザンチンの設定でflを研究した。
しかし、これらの作業はデータアンバランスの問題を完全に無視するか、クライアントの重みがサーバに周知されていると仮定するかのいずれかであり、実際には、重みはクライアント自身によってサーバに報告され、従って信頼できない可能性がある。
そこで本研究では, 実用的重み関係に基づく前処理法を提案し, モデル品質とビザンチンのロバスト性とのバランスが良好であることを実証的に示す。
また,本手法をランダムに選択したクライアントウェイトのサンプルに適用できることを解析的に確立した。
関連論文リスト
- Personalized Federated Learning with Mixture of Models for Adaptive Prediction and Model Fine-Tuning [22.705411388403036]
本稿では,新しい個人化フェデレーション学習アルゴリズムを提案する。
各クライアントは、局所的に微調整されたモデルと複数のフェデレートされたモデルを組み合わせることでパーソナライズされたモデルを構築する。
実データセットに関する理論的解析と実験は、このアプローチの有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-10-28T21:20:51Z) - Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning [51.560590617691005]
各コホートから「より多くのジュースを抽出できるかどうか」を単一の通信ラウンドでできることよりも検討する。
本手法は,デバイス間通信におけるFLモデルのトレーニングに必要な通信コストを最大74%削減する。
論文 参考訳(メタデータ) (2024-06-03T08:48:49Z) - Stochastic Approximation Approach to Federated Machine Learning [0.0]
本稿では、近似(SA)フレームワークにおけるフェデレートラーニング(FL)について検討する。
FLは、さまざまな参加者やクライアント間でニューラルネットワークモデルをトレーニングする、協調的な方法である。
提案アルゴリズムは頑健であり,より信頼性の高い重み推定を行う。
論文 参考訳(メタデータ) (2024-02-20T12:00:25Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
フェデレートラーニング(FL)は、プライバシを保存する方法で分散化されたデータからモデルを学習するための重要なテクニックである。
既存のFLメソッドは通常、各ラウンドでローカルモデル学習のために一様にクライアントをサンプリングする。
フェデレート学習のための新しいデータ一様サンプリング戦略(FedSampling)を提案する。
論文 参考訳(メタデータ) (2023-06-25T13:38:51Z) - FedDWA: Personalized Federated Learning with Dynamic Weight Adjustment [20.72576355616359]
本稿では,この問題を解決するために,emphFedDWA (Federated Learning with Dynamic Weight Adjustment) と呼ばれる新しいPFLアルゴリズムを提案する。
FedDWAは、クライアントから収集したモデルに基づいて、パーソナライズされたアグリゲーション重みを計算する。
我々は,5つの実データを用いて広範囲な実験を行い,FedDWAが通信トラフィックを大幅に削減し,最先端のアプローチよりもはるかに高いモデル精度を達成できることを実証した。
論文 参考訳(メタデータ) (2023-05-10T13:12:07Z) - FedCliP: Federated Learning with Client Pruning [3.796320380104124]
フェデレートラーニング(Federated Learning、FL)は、新たな分散ラーニングパラダイムである。
FLの基本的なボトルネックの1つは、分散クライアントと中央サーバの間の通信オーバーヘッドである。
マクロの観点から,最初の通信効率のよいFLトレーニングフレームワークであるFedCliPを提案する。
論文 参考訳(メタデータ) (2023-01-17T09:15:37Z) - Deep Unfolding-based Weighted Averaging for Federated Learning in
Heterogeneous Environments [11.023081396326507]
フェデレートラーニング(Federated Learning)は、複数のクライアントによるモデル更新と、中央サーバによるアップデートの集約を反復する、協調的なモデルトレーニング手法である。
そこで本研究では, パラメータ調整法として, 深部展開法(deep unfolding)を用いる。
提案手法は,実世界の現実的なタスクを遂行できるような事前学習モデルを用いて,大規模学習モデルを扱うことができる。
論文 参考訳(メタデータ) (2022-12-23T08:20:37Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
フェデレートラーニングは、複数のクライアントが協力してグローバルに共有されたモデルを学ぶことを可能にする。
クライアント側とサーバ側の両方の後方部を近似するために,オンラインラプラス近似を用いた新しいFLフレームワークを提案する。
提案手法の利点を実証し,いくつかのベンチマークで最新の結果を得た。
論文 参考訳(メタデータ) (2021-02-03T08:36:58Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
そこで我々は,各クライアントが他のクライアントと連携して,クライアント固有の目的ごとのより強力なモデルを得る,フェデレーション学習の代替案を提案する。
基礎となるデータ分布やクライアントの類似性に関する知識を前提とせず、各クライアントが関心のある任意のターゲット分布を最適化できるようにします。
この手法は既存の代替品を上回り、ローカルデータ配信以外の転送のようなパーソナライズされたFLの新機能を可能にする。
論文 参考訳(メタデータ) (2020-12-15T19:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。