論文の概要: Deep Unfolding-based Weighted Averaging for Federated Learning in
Heterogeneous Environments
- arxiv url: http://arxiv.org/abs/2212.12191v2
- Date: Mon, 28 Aug 2023 06:54:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 01:04:42.352642
- Title: Deep Unfolding-based Weighted Averaging for Federated Learning in
Heterogeneous Environments
- Title(参考訳): ヘテロジニアス環境におけるフェデレーション学習のためのdeep unfolding-based weighted averaging
- Authors: Ayano Nakai-Kasai and Tadashi Wadayama
- Abstract要約: フェデレートラーニング(Federated Learning)は、複数のクライアントによるモデル更新と、中央サーバによるアップデートの集約を反復する、協調的なモデルトレーニング手法である。
そこで本研究では, パラメータ調整法として, 深部展開法(deep unfolding)を用いる。
提案手法は,実世界の現実的なタスクを遂行できるような事前学習モデルを用いて,大規模学習モデルを扱うことができる。
- 参考スコア(独自算出の注目度): 11.023081396326507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a collaborative model training method that iterates
model updates by multiple clients and aggregation of the updates by a central
server. Device and statistical heterogeneity of participating clients cause
significant performance degradation so that an appropriate aggregation weight
should be assigned to each client in the aggregation phase of the server. To
adjust the aggregation weights, this paper employs deep unfolding, which is
known as the parameter tuning method that leverages both learning capability
using training data like deep learning and domain knowledge. This enables us to
directly incorporate the heterogeneity of the environment of interest into the
tuning of the aggregation weights. The proposed approach can be combined with
various federated learning algorithms. The results of numerical experiments
indicate that a higher test accuracy for unknown class-balanced data can be
obtained with the proposed method than that with conventional heuristic
weighting methods. The proposed method can handle large-scale learning models
with the aid of pretrained models such that it can perform practical real-world
tasks. Convergence rate of federated learning algorithms with the proposed
method is also provided in this paper.
- Abstract(参考訳): フェデレーション学習(federated learning)は、複数のクライアントによるモデル更新と中央サーバによる更新の集約を反復する、協調型モデルトレーニング手法である。
参加するクライアントのデバイスおよび統計的不均一性は、サーバのアグリゲーションフェーズにおいて、各クライアントに適切なアグリゲーション重みを割り当てるように、大幅なパフォーマンス劣化を引き起こす。
集約重みを調整するために,ディープラーニングやドメイン知識などのトレーニングデータを用いた学習能力を活用するパラメータチューニング手法として,deep unfoldingを用いる。
これにより、興味のある環境の不均一性を集約重みのチューニングに直接組み込むことができる。
提案手法は,様々なフェデレーション学習アルゴリズムと組み合わせることができる。
数値実験の結果,従来のヒューリスティック重み付け法よりも,未知のクラスバランスデータのテスト精度が高いことが示唆された。
提案手法は,事前学習モデルを用いて大規模学習モデルを扱うことができ,実際の実世界のタスクを実行できる。
本論文では,提案手法を用いた連合学習アルゴリズムの収束率について述べる。
関連論文リスト
- Dual-Criterion Model Aggregation in Federated Learning: Balancing Data Quantity and Quality [0.0]
フェデレートラーニング(FL)は、プライバシ保護のための協調学習の鍵となる方法の1つとなっている。
集約アルゴリズムは、システムの有効性と安全性を確保する上で最も重要なコンポーネントの1つとして認識される。
本研究では,クライアントノードからのデータ量と品質を含む新しい二項重み付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-12T14:09:16Z) - FedECADO: A Dynamical System Model of Federated Learning [15.425099636035108]
フェデレーション学習は分散最適化の力を活用して、別々のクライアント間で統一された機械学習モデルをトレーニングする。
本研究は,フェデレート学習プロセスの動的システム表現にインスパイアされた新しいアルゴリズムであるFedECADOを提案する。
FedProxやFedNovaといった著名な技術と比較して、FedECADOは多くの異種シナリオにおいて高い分類精度を達成する。
論文 参考訳(メタデータ) (2024-10-13T17:26:43Z) - Vanishing Variance Problem in Fully Decentralized Neural-Network Systems [0.8212195887472242]
フェデレートラーニングとゴシップラーニングは、データプライバシの懸念を軽減するために考案された方法論だ。
本研究では,分散補正モデル平均化アルゴリズムを提案する。
シミュレーションの結果,Gossip学習は,フェデレート学習に匹敵する収束効率を実現することができることがわかった。
論文 参考訳(メタデータ) (2024-04-06T12:49:20Z) - DA-PFL: Dynamic Affinity Aggregation for Personalized Federated Learning [13.393529840544117]
既存のパーソナライズされた学習モデルでは、学習モデルの性能を改善するために、類似したクライアントを同様のデータ分散で集約するのが好ましい。
本稿では,動的親和性に基づく個人化フェデレーション学習モデル(DA-PFL)を提案する。
論文 参考訳(メタデータ) (2024-03-14T11:12:10Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
我々は、複数のモデルを1つに“マージ”するモデル間で知識を伝達する、根本的に異なる方法を紹介します。
提案手法は,モデルのパラメータの重み付け平均を効果的に計算する。
マージ手順により、これまで探索されていなかった方法でモデルを組み合わせることが可能であることを示す。
論文 参考訳(メタデータ) (2021-11-18T17:59:35Z) - Federated Residual Learning [53.77128418049985]
クライアントはローカルモデルを個別に訓練し、サーバ側で共有するモデルと共同で予測を行う。
この新しいフェデレートされた学習フレームワークを使用することで、統合トレーニングが提供するパフォーマンス上のメリットをすべて享受しながら、中央共有モデルの複雑さを最小限にすることができる。
論文 参考訳(メタデータ) (2020-03-28T19:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。