論文の概要: Learning to Explore using Active Neural SLAM
- arxiv url: http://arxiv.org/abs/2004.05155v1
- Date: Fri, 10 Apr 2020 17:57:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 20:08:55.418544
- Title: Learning to Explore using Active Neural SLAM
- Title(参考訳): アクティブニューラルネットワークSLAMによる探索学習
- Authors: Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta,
Ruslan Salakhutdinov
- Abstract要約: この研究は、3D環境を探索するポリシーを学ぶためのモジュラーで階層的なアプローチを示す。
提案されたモデルはPointGoalタスクに簡単に移行することができ、CVPR 2019 Habitat PointGoal Navigation Challengeの勝者となった。
- 参考スコア(独自算出の注目度): 99.42064696897533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a modular and hierarchical approach to learn policies for
exploring 3D environments, called `Active Neural SLAM'. Our approach leverages
the strengths of both classical and learning-based methods, by using analytical
path planners with learned SLAM module, and global and local policies. The use
of learning provides flexibility with respect to input modalities (in the SLAM
module), leverages structural regularities of the world (in global policies),
and provides robustness to errors in state estimation (in local policies). Such
use of learning within each module retains its benefits, while at the same
time, hierarchical decomposition and modular training allow us to sidestep the
high sample complexities associated with training end-to-end policies. Our
experiments in visually and physically realistic simulated 3D environments
demonstrate the effectiveness of our approach over past learning and
geometry-based approaches. The proposed model can also be easily transferred to
the PointGoal task and was the winning entry of the CVPR 2019 Habitat PointGoal
Navigation Challenge.
- Abstract(参考訳): この研究は、'Active Neural SLAM'と呼ばれる3D環境を探索するポリシーを学ぶためのモジュラーで階層的なアプローチを提示している。
本手法は,slamモジュールを用いた解析パスプランナーとグローバルおよびローカルポリシを用いて,古典的および学習的手法の強みを活用する。
学習の使用は、入力モダリティ(SLAMモジュール)に対する柔軟性を提供し、世界の構造的規則性(グローバルポリシー)を活用し、状態推定(ローカルポリシー)におけるエラーに対して堅牢性を提供する。
このようなモジュール内の学習は、そのメリットを保ちながら、階層的分解とモジュール型トレーニングによって、エンドツーエンドのポリシのトレーニングに関連する高いサンプル複雑性を回避できるのです。
視覚的および物理的にシミュレーションされた3D環境における実験は、過去の学習と幾何学に基づくアプローチに対するアプローチの有効性を示す。
提案されたモデルはPointGoalタスクに簡単に移行することができ、CVPR 2019 Habitat PointGoal Navigation Challengeの勝者となった。
関連論文リスト
- Lifelong Learning of Large Language Model based Agents: A Roadmap [39.01532420650279]
連続的・漸進的な学習として知られる生涯学習は、人工知能(AGI)を前進させる重要な要素である
この調査は、生涯学習を大規模言語モデル(LLM)に組み込むための潜在的テクニックを体系的にまとめる最初のものである。
これらの柱が集合的に連続的な適応を可能にし、破滅的な忘れを軽減し、長期的なパフォーマンスを向上させる方法について強調する。
論文 参考訳(メタデータ) (2025-01-13T12:42:04Z) - DK-SLAM: Monocular Visual SLAM with Deep Keypoint Learning, Tracking and Loop-Closing [13.50980509878613]
公開されているデータセットに対する実験的評価は、DK-SLAMが従来のSLAMシステムと学習ベースのSLAMシステムより優れていることを示している。
本システムでは,キーポイント抽出ネットワークの学習を最適化するために,モデル非依存メタラーニング(MAML)戦略を採用している。
累積的な位置決め誤差を軽減するため、DK-SLAMはループ閉鎖検出にバイナリ機能を利用する新しいオンライン学習モジュールを組み込んだ。
論文 参考訳(メタデータ) (2024-01-17T12:08:30Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Local Learning with Neuron Groups [15.578925277062657]
局所学習はモデル並列性に対するアプローチであり、標準のエンドツーエンドの学習設定を取り除く。
本研究では,局所学習をレイヤやモジュールをサブコンポーネントに分割する方法について検討する。
論文 参考訳(メタデータ) (2023-01-18T16:25:10Z) - PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis [56.91758845045371]
我々はポイント関係認識ネットワーク(PRA-Net)という新しいフレームワークを提案する。
領域内構造学習(ISL)モジュールと領域間関係学習(IRL)モジュールで構成されている。
形状分類,キーポイント推定,部分セグメンテーションを含む複数の3次元ベンチマーク実験により,PRA-Netの有効性と性能が検証された。
論文 参考訳(メタデータ) (2021-12-09T13:24:43Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - LIFT-SLAM: a deep-learning feature-based monocular visual SLAM method [0.0]
従来のジオメトリベースのVSLAMと深層学習に基づく特徴記述子の可能性を組み合わせることを提案する。
KITTIとEurocのデータセットを用いた実験では、ディープラーニングが従来のVSLAMシステムの性能向上に有効であることが示されている。
論文 参考訳(メタデータ) (2021-03-31T20:35:10Z) - Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning [72.18725551199842]
BrIdging Reality and Dream (BIRD) と呼ばれる新しいモデルに基づく強化学習アルゴリズムを提案する。
虚構と実軌跡の相互情報を最大化し、虚構から学んだ政策改善を実軌跡に容易に一般化できるようにする。
提案手法は, モデルベース計画のサンプル効率を向上し, 挑戦的なビジュアル制御ベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-10-23T03:22:01Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z) - Contextual Policy Transfer in Reinforcement Learning Domains via Deep
Mixtures-of-Experts [24.489002406693128]
そこで本稿では,タスクのダイナミクスに関する状態依存的信念を学習するための,新しいミックス・オブ・エキスパートの定式化について紹介する。
我々は、このモデルを標準ポリシー再利用フレームワークに組み込む方法を示す。
論文 参考訳(メタデータ) (2020-02-29T07:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。