Learning to Explore using Active Neural SLAM
- URL: http://arxiv.org/abs/2004.05155v1
- Date: Fri, 10 Apr 2020 17:57:29 GMT
- Title: Learning to Explore using Active Neural SLAM
- Authors: Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta,
Ruslan Salakhutdinov
- Abstract summary: This work presents a modular and hierarchical approach to learn policies for exploring 3D environments.
The proposed model can also be easily transferred to the PointGoal task and was the winning entry of the CVPR 2019 Habitat PointGoal Navigation Challenge.
- Score: 99.42064696897533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a modular and hierarchical approach to learn policies for
exploring 3D environments, called `Active Neural SLAM'. Our approach leverages
the strengths of both classical and learning-based methods, by using analytical
path planners with learned SLAM module, and global and local policies. The use
of learning provides flexibility with respect to input modalities (in the SLAM
module), leverages structural regularities of the world (in global policies),
and provides robustness to errors in state estimation (in local policies). Such
use of learning within each module retains its benefits, while at the same
time, hierarchical decomposition and modular training allow us to sidestep the
high sample complexities associated with training end-to-end policies. Our
experiments in visually and physically realistic simulated 3D environments
demonstrate the effectiveness of our approach over past learning and
geometry-based approaches. The proposed model can also be easily transferred to
the PointGoal task and was the winning entry of the CVPR 2019 Habitat PointGoal
Navigation Challenge.
Related papers
- DK-SLAM: Monocular Visual SLAM with Deep Keypoint Learning, Tracking and Loop-Closing [13.50980509878613]
Experimental evaluations on publicly available datasets demonstrate that DK-SLAM outperforms leading traditional and learning based SLAM systems.
Our system employs a Model-Agnostic Meta-Learning (MAML) strategy to optimize the training of keypoint extraction networks.
To mitigate cumulative positioning errors, DK-SLAM incorporates a novel online learning module that utilizes binary features for loop closure detection.
arXiv Detail & Related papers (2024-01-17T12:08:30Z) - Goal-Conditioned Imitation Learning using Score-based Diffusion Policies [3.49482137286472]
We propose a new policy representation based on score-based diffusion models (SDMs)
We apply our new policy representation in the domain of Goal-Conditioned Imitation Learning (GCIL)
We show how BESO can even be used to learn a goal-independent policy from play-data usingintuitive-free guidance.
arXiv Detail & Related papers (2023-04-05T15:52:34Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Local Learning with Neuron Groups [15.578925277062657]
Local learning is an approach to model-parallelism that removes the standard end-to-end learning setup.
We study how local learning can be applied at the level of splitting layers or modules into sub-components.
arXiv Detail & Related papers (2023-01-18T16:25:10Z) - PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis [56.91758845045371]
We propose a novel framework named Point Relation-Aware Network (PRA-Net)
It is composed of an Intra-region Structure Learning (ISL) module and an Inter-region Relation Learning (IRL) module.
Experiments on several 3D benchmarks covering shape classification, keypoint estimation, and part segmentation have verified the effectiveness and the ability of PRA-Net.
arXiv Detail & Related papers (2021-12-09T13:24:43Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - LIFT-SLAM: a deep-learning feature-based monocular visual SLAM method [0.0]
We propose to combine the potential of deep learning-based feature descriptors with the traditional geometry-based VSLAM.
Experiments conducted on KITTI and Euroc datasets show that deep learning can be used to improve the performance of traditional VSLAM systems.
arXiv Detail & Related papers (2021-03-31T20:35:10Z) - Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning [72.18725551199842]
We propose a novel model-based reinforcement learning algorithm, called BrIdging Reality and Dream (BIRD)
It maximizes the mutual information between imaginary and real trajectories so that the policy improvement learned from imaginary trajectories can be easily generalized to real trajectories.
We demonstrate that our approach improves sample efficiency of model-based planning, and achieves state-of-the-art performance on challenging visual control benchmarks.
arXiv Detail & Related papers (2020-10-23T03:22:01Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z) - Contextual Policy Transfer in Reinforcement Learning Domains via Deep
Mixtures-of-Experts [24.489002406693128]
We introduce a novel mixture-of-experts formulation for learning state-dependent beliefs over source task dynamics.
We show how this model can be incorporated into standard policy reuse frameworks.
arXiv Detail & Related papers (2020-02-29T07:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.