論文の概要: Underwater Image Enhancement Based on Structure-Texture Reconstruction
- arxiv url: http://arxiv.org/abs/2004.05430v1
- Date: Sat, 11 Apr 2020 15:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 12:57:46.713321
- Title: Underwater Image Enhancement Based on Structure-Texture Reconstruction
- Title(参考訳): 構造-テクスチャ再構成に基づく水中画像強調
- Authors: Sen Lin, Kaichen Chi
- Abstract要約: 構造・テクスチャ再構成に基づく水中画像強調アルゴリズムを提案する。
実験の結果, 水中画像の色調, 彩度, 明度を効果的にバランスできることがわかった。
- 参考スコア(独自算出の注目度): 1.7868995105624021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aiming at the problems of color distortion, blur and excessive noise of
underwater image, an underwater image enhancement algorithm based on
structure-texture reconstruction is proposed. Firstly, the color equalization
of the degraded image is realized by the automatic color enhancement algorithm;
Secondly, the relative total variation is introduced to decompose the image
into the structure layer and texture layer; Then, the best background light
point is selected based on brightness, gradient discrimination, and hue
judgment, the transmittance of the backscatter component is obtained by the red
dark channel prior, which is substituted into the imaging model to remove the
fogging phenomenon in the structure layer. Enhancement of effective details in
the texture layer by multi scale detail enhancement algorithm and binary mask;
Finally, the structure layer and texture layer are reconstructed to get the
final image. The experimental results show that the algorithm can effectively
balance the hue, saturation, and clarity of underwater image, and has good
performance in different underwater environments.
- Abstract(参考訳): 水中画像の色歪み,ぼやけ,過大ノイズの問題に着目し,構造・テクスチャ再構成に基づく水中画像強調アルゴリズムを提案する。
Firstly, the color equalization of the degraded image is realized by the automatic color enhancement algorithm; Secondly, the relative total variation is introduced to decompose the image into the structure layer and texture layer; Then, the best background light point is selected based on brightness, gradient discrimination, and hue judgment, the transmittance of the backscatter component is obtained by the red dark channel prior, which is substituted into the imaging model to remove the fogging phenomenon in the structure layer.
マルチスケールディテールエンハンスメントアルゴリズムとバイナリマスクによるテクスチャ層の有効詳細化, 最後に, 構造層とテクスチャ層を再構築して最終画像を得る。
実験により, 水中画像の色調, 彩度, 明度を効果的にバランスさせ, 異なる水中環境下での良好な性能が得られた。
関連論文リスト
- Underwater Image Enhancement via Dehazing and Color Restoration [17.263563715287045]
既存の水中画像強調法は、ヘイズとカラーキャストを統一的な劣化過程として扱う。
水中画像の品質を向上させるために,視覚トランス (ViT) ベースのネットワーク (WaterFormer と呼ぶ) を提案する。
論文 参考訳(メタデータ) (2024-09-15T15:58:20Z) - Dual High-Order Total Variation Model for Underwater Image Restoration [13.789310785350484]
水中画像の高画質化と復元(UIER)は,水中画像の画質向上のための重要な手段である。
拡張水中画像形成モデル(UIFM)に基づく効果的な変分フレームワークを提案する。
提案フレームワークでは,重み係数に基づく色補正とカラーバランスを組み合わせることで,減衰した色チャネルを補償し,色キャストを除去する。
論文 参考訳(メタデータ) (2024-07-20T13:06:37Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Pyramid Texture Filtering [86.15126028139736]
目立った構造を保ちながらテクスチャをスムーズにするための,シンプルだが効果的な手法を提案する。
ガウスピラミッドの粗いレベルは、しばしば自然にテクスチャを排除し、主要な画像構造を要約する。
本手法は, 異なるスケール, 局所的なコントラスト, 形状のテクスチャから構造を分離する上で, 構造劣化や視覚的アーティファクトの導入を伴わずに有効であることを示す。
論文 参考訳(メタデータ) (2023-05-11T02:05:30Z) - Semantic-aware Texture-Structure Feature Collaboration for Underwater
Image Enhancement [58.075720488942125]
水中画像の強調は海洋工学や水生ロボット工学において重要な技術として注目されている。
我々は,高レベルな意味認識事前学習モデルと協調して,効率的でコンパクトな拡張ネットワークを開発する。
また,提案手法を水中の有意な物体検出タスクに適用し,高レベルの視覚タスクに適した意味認識能力を明らかにする。
論文 参考訳(メタデータ) (2022-11-19T07:50:34Z) - Underwater enhancement based on a self-learning strategy and attention
mechanism for high-intensity regions [0.0]
水中活動中に取得した画像は、濁度や光の減衰などの水の環境特性に悩まされる。
水中画像の強化に関する最近の研究と深層学習のアプローチに基づき、合成地下構造を生成する組合わせデータセットの欠如に対処する。
本稿では,ペアデータセットを必要としない深層学習に基づく水中画像強調のための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-04T19:55:40Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
本稿では,Ucolor と呼ばれる媒体透過誘導多色空間埋め込みによる水中画像強調ネットワークを提案する。
当社のネットワークは、複数の色空間を埋め込むことにより、水中画像の視覚的品質を効果的に改善できます。
論文 参考訳(メタデータ) (2021-04-27T07:35:30Z) - Learning to See Through Obstructions with Layered Decomposition [117.77024641706451]
移動画像から不要な障害を取り除くための学習に基づくアプローチを提案する。
本手法は背景要素と閉塞要素の運動差を利用して両方の層を復元する。
本研究では,合成データから得られた提案手法が実画像に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-08-11T17:59:31Z) - Underwater image enhancement with Image Colorfulness Measure [7.292965806774365]
トレーニング可能なエンドツーエンドニューラルモデルである新しいエンハンスメントモデルを提案する。
より詳細に、コントラストとカラフルネスのために、この拡張ネットワークはピクセルレベルと特性レベルのトレーニング基準によって共同で最適化されている。
論文 参考訳(メタデータ) (2020-04-18T12:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。