論文の概要: Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2407.13211v2
- Date: Thu, 1 Aug 2024 03:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 13:35:28.481093
- Title: Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークを用いた画像超解像再構成機構に関する研究
- Authors: Hao Yan, Zixiang Wang, Zhengjia Xu, Zhuoyue Wang, Zhizhong Wu, Ranran Lyu,
- Abstract要約: 超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
- 参考スコア(独自算出の注目度): 8.739451985459638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Super-resolution reconstruction techniques entail the utilization of software algorithms to transform one or more sets of low-resolution images captured from the same scene into high-resolution images. In recent years, considerable advancement has been observed in the domain of single-image super-resolution algorithms, particularly those based on deep learning techniques. Nevertheless, the extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms. These issues result in the network architecture being unable to effectively utilize the diverse range of information at different levels. The loss of high-frequency details is significant, and the final reconstructed image features are overly smooth, with a lack of fine texture details. This negatively impacts the subjective visual quality of the image. The objective is to recover high-quality, high-resolution images from low-resolution images. In this work, an enhanced deep convolutional neural network model is employed, comprising multiple convolutional layers, each of which is configured with specific filters and activation functions to effectively capture the diverse features of the image. Furthermore, a residual learning strategy is employed to accelerate training and enhance the convergence of the network, while sub-pixel convolutional layers are utilized to refine the high-frequency details and textures of the image. The experimental analysis demonstrates the superior performance of the proposed model on multiple public datasets when compared with the traditional bicubic interpolation method and several other learning-based super-resolution methods. Furthermore, it proves the model's efficacy in maintaining image edges and textures.
- Abstract(参考訳): 超高解像度再構成技術は、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換するためのソフトウェアアルゴリズムの利用を必要とする。
近年、シングルイメージ超解像アルゴリズムの領域、特にディープラーニング技術に基づく領域において、かなりの進歩が観察されている。
それでも、再構成過程における画像の特徴抽出や非線形マッピング手法は、既存のアルゴリズムでは難しいままである。
これらの問題により、ネットワークアーキテクチャは様々なレベルで多様な情報を効果的に活用できない。
微細なテクスチャの詳細が欠如しているため、最終的な再構成画像の特徴は過度に滑らかである。
これは画像の主観的な視覚的品質に悪影響を及ぼす。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
本研究では,複数の畳み込み層から構成される深層畳み込みニューラルネットワークモデルを用いて,画像の多様な特徴を効果的に捉えるために,特定のフィルタとアクティベーション機能を備える。
さらに、トレーニングを加速し、ネットワークの収束を高めるために残留学習戦略を採用し、サブピクセル畳み込み層を利用して、画像の高周波の詳細やテクスチャを洗練させる。
実験により、従来のバイコビック補間法や他の学習に基づく超解像法と比較して、複数の公開データセット上でのモデルの有効性が示された。
さらに、画像のエッジやテクスチャを維持する上で、モデルの有効性を証明する。
関連論文リスト
- Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Cross-resolution Face Recognition via Identity-Preserving Network and
Knowledge Distillation [12.090322373964124]
クロスレゾリューション顔認識は、現代の深層顔認識システムにとって難しい問題である。
本稿では,低分解能画像の低周波成分に蓄積される識別情報にネットワークを集中させる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-15T14:52:46Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
本稿では,CG画像検出のための深いテクスチャと高周波特徴を有する共同学習戦略を提案する。
セマンティックセグメンテーションマップを生成して、アフィン変換操作を誘導する。
原画像と原画像の高周波成分の組み合わせを、注意機構を備えたマルチブランチニューラルネットワークに供給する。
論文 参考訳(メタデータ) (2022-09-07T17:30:40Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Image super-resolution reconstruction based on attention mechanism and
feature fusion [3.42658286826597]
注意機構とマルチスケール特徴融合に基づくネットワーク構造を提案する。
実験により,提案手法は,他の代表的超解像再構成アルゴリズムよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-04-08T11:20:10Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
ディープラーニング手法は、低解像度の入力から高解像度の出力へのエンドツーエンドのマッピングを学習するために、トレーニングデータに依存する。
本稿では,スパース事前を組み込んだマルチモーダル深層学習設計を提案し,他の画像モダリティからの情報をネットワークアーキテクチャに効果的に統合する。
提案手法は,サイド情報を用いた畳み込みスパース符号化の反復的アルゴリズムに類似した,新しい展開演算子に依存している。
論文 参考訳(メタデータ) (2020-01-21T14:41:53Z) - Learned Multi-View Texture Super-Resolution [76.82725815863711]
仮想3Dオブジェクトの高解像度テクスチャマップを,そのオブジェクトの低解像度画像の集合から作成できる超高解像度手法を提案する。
本アーキテクチャは, (i) 重なり合うビューの冗長性に基づくマルチビュー超解像の概念と, (ii) 高分解能画像構造の学習先行に基づくシングルビュー超解像の概念を統一する。
論文 参考訳(メタデータ) (2020-01-14T13:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。