論文の概要: Principal Neighbourhood Aggregation for Graph Nets
- arxiv url: http://arxiv.org/abs/2004.05718v5
- Date: Thu, 31 Dec 2020 08:23:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 04:54:20.416867
- Title: Principal Neighbourhood Aggregation for Graph Nets
- Title(参考訳): グラフネットにおける主近傍アグリゲーション
- Authors: Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Li\`o, Petar
Veli\v{c}kovi\'c
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データ上の様々な予測タスクに有効なモデルであることが示されている。
表現力に関する最近の研究は同型タスクと可算特徴空間に焦点を当てている。
我々はこの理論フレームワークを拡張し、現実世界の入力領域で定期的に発生する連続的な特徴を含める。
- 参考スコア(独自算出の注目度): 4.339839287869653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have been shown to be effective models for
different predictive tasks on graph-structured data. Recent work on their
expressive power has focused on isomorphism tasks and countable feature spaces.
We extend this theoretical framework to include continuous features - which
occur regularly in real-world input domains and within the hidden layers of
GNNs - and we demonstrate the requirement for multiple aggregation functions in
this context. Accordingly, we propose Principal Neighbourhood Aggregation
(PNA), a novel architecture combining multiple aggregators with degree-scalers
(which generalize the sum aggregator). Finally, we compare the capacity of
different models to capture and exploit the graph structure via a novel
benchmark containing multiple tasks taken from classical graph theory,
alongside existing benchmarks from real-world domains, all of which demonstrate
the strength of our model. With this work, we hope to steer some of the GNN
research towards new aggregation methods which we believe are essential in the
search for powerful and robust models.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データ上の様々な予測タスクに有効なモデルであることが示されている。
最近の表現力の研究は同型タスクと可算特徴空間に焦点を当てている。
この理論フレームワークは、実世界の入力ドメインやGNNの隠されたレイヤ内で定期的に発生する連続的な機能を含むように拡張し、このコンテキストにおける複数の集約関数の必要性を実証する。
そこで本研究では,複数のアグリゲータと次数スケーラ(総和アグリゲータを一般化する)を組み合わせた新しいアーキテクチャであるprincipal neighborhoodhood aggregation (pna)を提案する。
最後に、従来のグラフ理論から取られた複数のタスクを含む新しいベンチマークと、我々のモデルの強みを示す実世界のドメインからの既存のベンチマークを用いて、グラフ構造をキャプチャして利用するための異なるモデルの能力を比較した。
この研究により、我々はGNNの研究のいくつかを、強力で堅牢なモデルの探索に欠かせない新しい集約手法へと導いていきたいと考えています。
関連論文リスト
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
我々は、ゼロショット学習を用いて、多様なグラフタスクを効果的に一般化する統合グラフ推論フレームワークSCOREを紹介する。
SCOREを38種類のグラフデータセットを用いて評価し、ノードレベル、リンクレベル、グラフレベルのタスクを複数のドメインでカバーする。
論文 参考訳(メタデータ) (2024-10-16T14:26:08Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
解析条件後部を解析し,推論精度を向上させるグラフポアソン因子分析法(GPFA)を開発した。
また,GPFAを多層構造に拡張したグラフPoisson gamma belief Network (GPGBN) を用いて,階層的な文書関係を複数の意味レベルで捉える。
本モデルでは,高品質な階層型文書表現を抽出し,様々なグラフ解析タスクにおいて有望な性能を実現する。
論文 参考訳(メタデータ) (2024-10-13T02:22:14Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - The Expressive Power of Graph Neural Networks: A Survey [9.08607528905173]
定義の異なる表現力向上モデルに関する第1回調査を行う。
モデルは、グラフ機能拡張、グラフトポロジ拡張、GNNアーキテクチャ拡張という3つのカテゴリに基づいてレビューされる。
論文 参考訳(メタデータ) (2023-08-16T09:12:21Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
近年,グラフニューラルネットワーク(GNN)が注目されている。
近年の研究では、GNNはグラフの複雑な基盤構造に弱いことが示されている。
半教師付き分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T06:17:11Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
グラフニューラルネットワークのノード特徴集約ステップと深さを分離し、異なる集約特徴が予測性能にどのように寄与するかを経験的に分析する。
集約ステップによって生成された全ての機能が有用であるとは限らないことを示し、これらの少ない情報的特徴を用いることは、GNNモデルの性能に有害であることを示す。
提案モデルでは,提案モデルが最先端のGNNモデルと同等あるいはそれ以上の精度を達成可能であることを実証的に示す。
論文 参考訳(メタデータ) (2021-11-12T14:53:22Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。