論文の概要: Dynamic R-CNN: Towards High Quality Object Detection via Dynamic
Training
- arxiv url: http://arxiv.org/abs/2004.06002v2
- Date: Sun, 26 Jul 2020 07:28:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 00:09:44.907441
- Title: Dynamic R-CNN: Towards High Quality Object Detection via Dynamic
Training
- Title(参考訳): ダイナミックR-CNN:ダイナミックトレーニングによる高品質物体検出に向けて
- Authors: Hongkai Zhang, Hong Chang, Bingpeng Ma, Naiyan Wang, Xilin Chen
- Abstract要約: ラベル割り当て基準と回帰損失関数の形状を調整するための動的R-CNNを提案する。
我々はResNet-50-FPNベースラインを1.9%のAPと5.5%のAP$_90$で改善し、余分なオーバーヘッドを伴わない。
- 参考スコア(独自算出の注目度): 70.2914594796002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although two-stage object detectors have continuously advanced the
state-of-the-art performance in recent years, the training process itself is
far from crystal. In this work, we first point out the inconsistency problem
between the fixed network settings and the dynamic training procedure, which
greatly affects the performance. For example, the fixed label assignment
strategy and regression loss function cannot fit the distribution change of
proposals and thus are harmful to training high quality detectors.
Consequently, we propose Dynamic R-CNN to adjust the label assignment criteria
(IoU threshold) and the shape of regression loss function (parameters of
SmoothL1 Loss) automatically based on the statistics of proposals during
training. This dynamic design makes better use of the training samples and
pushes the detector to fit more high quality samples. Specifically, our method
improves upon ResNet-50-FPN baseline with 1.9% AP and 5.5% AP$_{90}$ on the MS
COCO dataset with no extra overhead. Codes and models are available at
https://github.com/hkzhang95/DynamicRCNN.
- Abstract(参考訳): 2段階の物体検出器は近年、最先端の性能を継続的に向上させているが、トレーニングプロセス自体は結晶とは程遠い。
本稿では,ネットワーク設定の固定化と動的トレーニング手順の整合性の問題について指摘し,性能に大きく影響することを示した。
例えば、固定ラベル割り当て戦略と回帰損失関数は提案の分布変化に適合せず、高品質検出器の訓練には有害である。
そこで本研究では,ラベル割り当て基準(IoU閾値)と回帰損失関数(SmoothL1損失パラメータ)の形状を,トレーニング中の提案の統計に基づいて自動調整する動的R-CNNを提案する。
この動的設計はトレーニングサンプルをよりよく利用し、検出器を高品質なサンプルに適合させる。
具体的には、ResNet-50-FPNベースラインを1.9%のAPと5.5%のAP$_{90}$で改善し、余分なオーバーヘッドを伴わない。
コードとモデルはhttps://github.com/hkzhang95/DynamicRCNNで入手できる。
関連論文リスト
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Convolutional Neural Network Compression via Dynamic Parameter Rank
Pruning [4.7027290803102675]
動的パラメータランクプルーニングによるCNN圧縮の効率的なトレーニング手法を提案する。
提案手法は, 分類性能の維持や向上を図りながら, かなりの蓄えを得られることを示す。
論文 参考訳(メタデータ) (2024-01-15T23:52:35Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
本稿では、単純なODEとデータの一部をトレーニングしたニューラルネットワークを用いて、PINN(RAMP-Net)を介してロバスト適応MPCフレームワークを提案する。
我々は,SOTA回帰に基づく2つのMPC法と比較して,0.5~1.75m/sの追跡誤差を7.8%から43.2%,8.04%から61.5%削減した。
論文 参考訳(メタデータ) (2022-09-19T16:11:51Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
本稿では,トレーニング中にのみ第2のネットワークを導入するRSNNの教師付きトレーニング手順を提案する。
提案したトレーニング手順は、リカレント層とリードアウト層の両方のターゲットを生成することで構成される。
本研究では,8つの力学系をモデル化するためのフルFORCEトレーニング手法の性能向上とノイズ堅牢性を示す。
論文 参考訳(メタデータ) (2022-05-26T19:01:19Z) - Synergistic Network Learning and Label Correction for Noise-robust Image
Classification [28.27739181560233]
ディープニューラルネットワーク(DNN)は、トレーニングラベルノイズに過度に適合する傾向があるため、実際のモデルパフォーマンスは低下する。
損失選択と雑音補正のアイデアを組み合わせたロバストなラベル補正フレームワークを提案する。
ノイズタイプやレートの異なる合成および実世界のデータセット上で,本手法を実証する。
論文 参考訳(メタデータ) (2022-02-27T23:06:31Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
我々は、深層ニューラルネットワークのトレーニング中に、スケール不均衡を伴うマルチスケールダイナミクスから生じる障害モードを記述し、治療する。
PINNは、物理方程式モデルとデータとのシームレスな統合を可能にする、一般的な機械学習テンプレートである。
逐次トレーニングを用いた逆モデリングでは,逆ディリクレ重み付けがPINNを破滅的忘れから保護することがわかった。
論文 参考訳(メタデータ) (2021-07-02T10:01:37Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - FracTrain: Fractionally Squeezing Bit Savings Both Temporally and
Spatially for Efficient DNN Training [81.85361544720885]
アクティベーション、ウェイト、グラデーションの精度を徐々に高めるプログレッシブ分数量子化を統合したFracTrainを提案します。
FracTrainはDNNトレーニングの計算コストとハードウェア量子化エネルギー/レイテンシを削減し、同等以上の精度(-0.12%+1.87%)を達成する。
論文 参考訳(メタデータ) (2020-12-24T05:24:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。