Dynamic R-CNN: Towards High Quality Object Detection via Dynamic
Training
- URL: http://arxiv.org/abs/2004.06002v2
- Date: Sun, 26 Jul 2020 07:28:39 GMT
- Title: Dynamic R-CNN: Towards High Quality Object Detection via Dynamic
Training
- Authors: Hongkai Zhang, Hong Chang, Bingpeng Ma, Naiyan Wang, Xilin Chen
- Abstract summary: We propose Dynamic R-CNN to adjust the label assignment criteria and the shape of regression loss function.
Our method improves upon ResNet-50-FPN baseline with 1.9% AP and 5.5% AP$_90$ on the MS dataset with no extra overhead.
- Score: 70.2914594796002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although two-stage object detectors have continuously advanced the
state-of-the-art performance in recent years, the training process itself is
far from crystal. In this work, we first point out the inconsistency problem
between the fixed network settings and the dynamic training procedure, which
greatly affects the performance. For example, the fixed label assignment
strategy and regression loss function cannot fit the distribution change of
proposals and thus are harmful to training high quality detectors.
Consequently, we propose Dynamic R-CNN to adjust the label assignment criteria
(IoU threshold) and the shape of regression loss function (parameters of
SmoothL1 Loss) automatically based on the statistics of proposals during
training. This dynamic design makes better use of the training samples and
pushes the detector to fit more high quality samples. Specifically, our method
improves upon ResNet-50-FPN baseline with 1.9% AP and 5.5% AP$_{90}$ on the MS
COCO dataset with no extra overhead. Codes and models are available at
https://github.com/hkzhang95/DynamicRCNN.
Related papers
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Convolutional Neural Network Compression via Dynamic Parameter Rank
Pruning [4.7027290803102675]
We propose an efficient training method for CNN compression via dynamic parameter rank pruning.
Our experiments show that the proposed method can yield substantial storage savings while maintaining or even enhancing classification performance.
arXiv Detail & Related papers (2024-01-15T23:52:35Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
We propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a neural network trained partly from simple ODEs and partly from data.
We report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
arXiv Detail & Related papers (2022-09-19T16:11:51Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
We propose a supervised training procedure for RSNNs, where a second network is introduced only during the training.
The proposed training procedure consists of generating targets for both recurrent and readout layers.
We demonstrate the improved performance and noise robustness of the proposed full-FORCE training procedure to model 8 dynamical systems.
arXiv Detail & Related papers (2022-05-26T19:01:19Z) - Synergistic Network Learning and Label Correction for Noise-robust Image
Classification [28.27739181560233]
Deep Neural Networks (DNNs) tend to overfit training label noise, resulting in poorer model performance in practice.
We propose a robust label correction framework combining the ideas of small loss selection and noise correction.
We demonstrate our method on both synthetic and real-world datasets with different noise types and rates.
arXiv Detail & Related papers (2022-02-27T23:06:31Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
We describe and remedy a failure mode that may arise from multi-scale dynamics with scale imbalances during training of deep neural networks.
PINNs are popular machine-learning templates that allow for seamless integration of physical equation models with data.
For inverse modeling using sequential training, we find that inverse-Dirichlet weighting protects a PINN against catastrophic forgetting.
arXiv Detail & Related papers (2021-07-02T10:01:37Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - FracTrain: Fractionally Squeezing Bit Savings Both Temporally and
Spatially for Efficient DNN Training [81.85361544720885]
We propose FracTrain that integrates progressive fractional quantization which gradually increases the precision of activations, weights, and gradients.
FracTrain reduces computational cost and hardware-quantified energy/latency of DNN training while achieving a comparable or better (-0.12%+1.87%) accuracy.
arXiv Detail & Related papers (2020-12-24T05:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.