RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network
- URL: http://arxiv.org/abs/2209.09025v1
- Date: Mon, 19 Sep 2022 16:11:51 GMT
- Title: RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network
- Authors: Sourav Sanyal and Kaushik Roy
- Abstract summary: We propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a neural network trained partly from simple ODEs and partly from data.
We report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
- Score: 6.309365332210523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model Predictive Control (MPC) is a state-of-the-art (SOTA) control technique
which requires solving hard constrained optimization problems iteratively. For
uncertain dynamics, analytical model based robust MPC imposes additional
constraints, increasing the hardness of the problem. The problem exacerbates in
performance-critical applications, when more compute is required in lesser
time. Data-driven regression methods such as Neural Networks have been proposed
in the past to approximate system dynamics. However, such models rely on high
volumes of labeled data, in the absence of symbolic analytical priors. This
incurs non-trivial training overheads. Physics-informed Neural Networks (PINNs)
have gained traction for approximating non-linear system of ordinary
differential equations (ODEs), with reasonable accuracy. In this work, we
propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a
neural network trained partly from simple ODEs and partly from data. A physics
loss is used to learn simple ODEs representing ideal dynamics. Having access to
analytical functions inside the loss function acts as a regularizer, enforcing
robust behavior for parametric uncertainties. On the other hand, a regular data
loss is used for adapting to residual disturbances (non-parametric
uncertainties), unaccounted during mathematical modelling. Experiments are
performed in a simulated environment for trajectory tracking of a quadrotor. We
report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds
ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
Related papers
- Reservoir computing for system identification and predictive control with limited data [3.1484174280822845]
We assess the ability of RNN variants to both learn the dynamics of benchmark control systems and serve as surrogate models for model predictive control (MPC)
We find that echo state networks (ESNs) have a variety of benefits over competing architectures, namely reductions in computational complexity, longer valid prediction times, and reductions in cost of the MPC objective function.
arXiv Detail & Related papers (2024-10-23T21:59:07Z) - Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
This paper compares physics-informed neural network (PINN), conventional neural network (NN) and traditional numerical discretization methods on solving differential equations (DEs)
We focus on the soft-constrained PINN approach and formalized its mathematical framework and computational flow for solving Ordinary DEs and Partial DEs.
We demonstrate that the DeepXDE-based implementation of PINN is not only light code and efficient in training, but also flexible across CPU/GPU platforms.
arXiv Detail & Related papers (2024-08-19T13:02:06Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Physics Informed Neural Networks for Phase Locked Loop Transient
Stability Assessment [0.0]
Using power-electronic controllers, such as Phase Locked Loops (PLLs), to keep grid-tied renewable resources in synchronism with the grid can cause fast transient behavior during grid faults leading to instability.
This paper proposes a Neural Network algorithm that accurately predicts the transient dynamics of a controller under fault with less labeled training data.
The algorithm's performance is compared against a ROM and an EMT simulation in PSCAD for the CIGRE benchmark model C4.49, demonstrating its ability to accurately approximate trajectories and ROAs of a controller under varying grid impedance.
arXiv Detail & Related papers (2023-03-21T18:09:20Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
We describe and remedy a failure mode that may arise from multi-scale dynamics with scale imbalances during training of deep neural networks.
PINNs are popular machine-learning templates that allow for seamless integration of physical equation models with data.
For inverse modeling using sequential training, we find that inverse-Dirichlet weighting protects a PINN against catastrophic forgetting.
arXiv Detail & Related papers (2021-07-02T10:01:37Z) - Dynamic R-CNN: Towards High Quality Object Detection via Dynamic
Training [70.2914594796002]
We propose Dynamic R-CNN to adjust the label assignment criteria and the shape of regression loss function.
Our method improves upon ResNet-50-FPN baseline with 1.9% AP and 5.5% AP$_90$ on the MS dataset with no extra overhead.
arXiv Detail & Related papers (2020-04-13T15:20:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.