Sleep Stage Scoring Using Joint Frequency-Temporal and Unsupervised
Features
- URL: http://arxiv.org/abs/2004.06044v1
- Date: Fri, 10 Apr 2020 02:00:29 GMT
- Title: Sleep Stage Scoring Using Joint Frequency-Temporal and Unsupervised
Features
- Authors: Mohamadreza Jafaryani, Saeed Khorram, Vahid Pourahmadi, Minoo Shahbazi
- Abstract summary: A number of Automatic Sleep Stage Recognition (ASSR) methods have been proposed.
Most of these methods use temporal-frequency features that have been extracted from the vital signals.
Recently, some ASSR methods have been proposed which use deep neural networks for unsupervised feature extraction.
In this paper, we proposed to combine the two ideas and use both temporal-frequency and unsupervised features at the same time.
- Score: 5.104181562775778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Patients with sleep disorders can better manage their lifestyle if they know
about their special situations. Detection of such sleep disorders is usually
possible by analyzing a number of vital signals that have been collected from
the patients. To simplify this task, a number of Automatic Sleep Stage
Recognition (ASSR) methods have been proposed. Most of these methods use
temporal-frequency features that have been extracted from the vital signals.
However, due to the non-stationary nature of sleep signals, such schemes are
not leading an acceptable accuracy. Recently, some ASSR methods have been
proposed which use deep neural networks for unsupervised feature extraction. In
this paper, we proposed to combine the two ideas and use both
temporal-frequency and unsupervised features at the same time. To augment the
time resolution, each standard epoch is segmented into 5 sub-epochs.
Additionally, to enhance the accuracy, we employ three classifiers with
different properties and then use an ensemble method as the ultimate
classifier. The simulation results show that the proposed method enhances the
accuracy of conventional ASSR methods.
Related papers
- AIOSA: An approach to the automatic identification of obstructive sleep
apnea events based on deep learning [1.5381930379183162]
OSAS is associated with higher mortality, worse neurological deficits, worse functional outcome after rehabilitation, and a higher likelihood of uncontrolled hypertension.
The gold standard test for diagnosing OSAS is polysomnography (PSG)
We propose a convolutional deep learning architecture able to reduce the temporal resolution of raw waveform data.
arXiv Detail & Related papers (2023-02-10T11:21:47Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - SleePyCo: Automatic Sleep Scoring with Feature Pyramid and Contrastive
Learning [0.0]
We propose a deep learning framework named SleePyCo that incorporates 1) a feature pyramid and 2) supervised contrastive learning for automatic sleep scoring.
For the feature pyramid, we propose a backbone network named SleePyCo-backbone to consider multiple feature sequences on different temporal and frequency scales.
Supervised contrastive learning allows the network to extract class discriminative features by minimizing the distance between intra-class features and simultaneously maximizing that between inter-class features.
arXiv Detail & Related papers (2022-09-20T04:10:49Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - Chest Area Segmentation in Depth Images of Sleeping Patients [0.7664665225284267]
The most common and efficient way to detect sleep issues remains a sleep examination performed in a sleep laboratory, in a procedure called Polysomnography (PSG)
With the novel development of more accurate and affordable 3D sensing devices, new approaches for non-contact sleep study emerged.
These methods utilize different techniques with the purpose to extract the same sleep parameters, but remotely, eliminating the need of any physical connections to the patient's body.
In this study, we propose an automatic chest area segmentation algorithm, that given an input set of 3D frames of a sleeping patient, outputs a segmentation image with the pixels that
arXiv Detail & Related papers (2020-08-22T07:54:32Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - RED: Deep Recurrent Neural Networks for Sleep EEG Event Detection [0.0]
We propose a deep learning approach for sleep EEG event detection called Recurrent Event Detector (RED)
RED uses one of two input representations: a) the time-domain EEG signal, or b) a complex spectrogram of the signal obtained with the Continuous Wavelet Transform (CWT)
When evaluated on the MASS dataset, our detectors outperform the state of the art in both sleep spindle and K-complex detection with a mean F1-score of at least 80.9% and 82.6%, respectively.
arXiv Detail & Related papers (2020-05-15T21:48:26Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.