RED: Deep Recurrent Neural Networks for Sleep EEG Event Detection
- URL: http://arxiv.org/abs/2005.07795v2
- Date: Sat, 3 Oct 2020 18:42:32 GMT
- Title: RED: Deep Recurrent Neural Networks for Sleep EEG Event Detection
- Authors: Nicol\'as I. Tapia, Pablo A. Est\'evez
- Abstract summary: We propose a deep learning approach for sleep EEG event detection called Recurrent Event Detector (RED)
RED uses one of two input representations: a) the time-domain EEG signal, or b) a complex spectrogram of the signal obtained with the Continuous Wavelet Transform (CWT)
When evaluated on the MASS dataset, our detectors outperform the state of the art in both sleep spindle and K-complex detection with a mean F1-score of at least 80.9% and 82.6%, respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The brain electrical activity presents several short events during sleep that
can be observed as distinctive micro-structures in the electroencephalogram
(EEG), such as sleep spindles and K-complexes. These events have been
associated with biological processes and neurological disorders, making them a
research topic in sleep medicine. However, manual detection limits their study
because it is time-consuming and affected by significant inter-expert
variability, motivating automatic approaches. We propose a deep learning
approach based on convolutional and recurrent neural networks for sleep EEG
event detection called Recurrent Event Detector (RED). RED uses one of two
input representations: a) the time-domain EEG signal, or b) a complex
spectrogram of the signal obtained with the Continuous Wavelet Transform (CWT).
Unlike previous approaches, a fixed time window is avoided and temporal context
is integrated to better emulate the visual criteria of experts. When evaluated
on the MASS dataset, our detectors outperform the state of the art in both
sleep spindle and K-complex detection with a mean F1-score of at least 80.9%
and 82.6%, respectively. Although the CWT-domain model obtained a similar
performance than its time-domain counterpart, the former allows in principle a
more interpretable input representation due to the use of a spectrogram. The
proposed approach is event-agnostic and can be used directly to detect other
types of sleep events.
Related papers
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - SleePyCo: Automatic Sleep Scoring with Feature Pyramid and Contrastive
Learning [0.0]
We propose a deep learning framework named SleePyCo that incorporates 1) a feature pyramid and 2) supervised contrastive learning for automatic sleep scoring.
For the feature pyramid, we propose a backbone network named SleePyCo-backbone to consider multiple feature sequences on different temporal and frequency scales.
Supervised contrastive learning allows the network to extract class discriminative features by minimizing the distance between intra-class features and simultaneously maximizing that between inter-class features.
arXiv Detail & Related papers (2022-09-20T04:10:49Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - Application of Machine Learning to Sleep Stage Classification [0.7196441171503458]
Sleep studies are imperative to recapitulate phenotypes associated with sleep loss and uncover mechanisms contributing to psychopathology.
Most often, investigators manually classify the polysomnography into vigilance states, which is time-consuming and prone to inter-scorer variability.
We aim to produce an automated and open-access classifier that can reliably predict vigilance state based on a single EEG reading.
arXiv Detail & Related papers (2021-11-04T18:00:50Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - MRNet: a Multi-scale Residual Network for EEG-based Sleep Staging [5.141687309207561]
We propose a new framework, called MRNet, for data-driven sleep staging by integrating a multi-scale feature fusion model and a sequential correction algorithm.
EEG signals lose considerable detailed information in network propagation, which affects the representation of deep features.
Experiment results demonstrate the competitive performance of our proposed approach on both accuracy and F1 score.
arXiv Detail & Related papers (2021-01-07T13:48:30Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.