Single Channel EEG Based Insomnia Identification Without Sleep Stage Annotations
- URL: http://arxiv.org/abs/2402.06251v3
- Date: Fri, 13 Dec 2024 09:02:22 GMT
- Title: Single Channel EEG Based Insomnia Identification Without Sleep Stage Annotations
- Authors: Chan-Yun Yang, Nilantha Premakumara, Hooman Samani, Chinthaka Premachandra,
- Abstract summary: The performance of the model is validated using 50 insomnia patients and 50 healthy subjects.<n>The developed model has the potential to simplify current sleep monitoring systems and enable in-home ambulatory monitoring.
- Score: 0.3495246564946556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a new approach to identifying patients with insomnia using a single EEG channel, without the need for sleep stage annotation. Data preprocessing, feature extraction, feature selection, and classification techniques are used to automatically detect insomnia based on features extracted from spectral and temporal domains, including relative power in the delta, sigma, beta and gamma bands, total power, absolute slow wave power, power ratios, mean, zero crossing rate, mobility, and complexity. A Pearson correlation coefficient, t-test, p-value, and two rules are used to select the optimal set of features for accurately classifying insomnia patients and rejecting negatively affecting features. Classification schemes including a general artificial neural network, convolutional neural network, and support vector machine are applied to the optimal feature set to distinguish between insomnia patients and healthy subjects. The performance of the model is validated using 50 insomnia patients and 50 healthy subjects, with the Fp2 channel and 1D-CNN classifier achieving the highest accuracy and Cohen's kappa coefficient at 97.85% and 94.15%, respectively. The developed model has the potential to simplify current sleep monitoring systems and enable in-home ambulatory monitoring.
Related papers
- MobileNetV2: A lightweight classification model for home-based sleep apnea screening [3.463585190363689]
This study proposes a novel lightweight neural network model leveraging features extracted from electrocardiogram (ECG) and respiratory signals for early OSA screening.
ECG signals are used to generate feature spectrograms to predict sleep stages, while respiratory signals are employed to detect sleep-related breathing abnormalities.
By integrating these predictions, the method calculates the apnea-hypopnea index (AHI) with enhanced accuracy, facilitating precise OSA diagnosis.
arXiv Detail & Related papers (2024-12-28T01:37:25Z) - A Deep Generative Model for Five-Class Sleep Staging with Arbitrary Sensor Input [14.146442985487598]
Gold-standard sleep scoring is based on epoch-based assignment of sleep stages based on EEG, EOG and EMG signals.
We developed a deep generative model for automatic sleep staging from a plurality of sensors and any -- arbitrary -- combination thereof.
On single-channel EEG, the model reaches the performance limit in terms of polysomnography inter-rater agreement.
arXiv Detail & Related papers (2024-08-09T08:09:28Z) - What Radio Waves Tell Us about Sleep [34.690382091650314]
We develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep.
We show that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM) and detects sleep apnea (AUROC = 0.88)
The model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders.
arXiv Detail & Related papers (2024-05-20T02:41:21Z) - Sleep Stage Classification Using a Pre-trained Deep Learning Model [0.0]
"EEGMobile" is a machine-learning model that learns from electroencephalogram (EEG) spectrograms of brain signals.
The model achieved an accuracy of 86.97% on a publicly available dataset named "Sleep-EDF20", outperforming other models proposed by different researchers.
arXiv Detail & Related papers (2023-09-12T23:02:19Z) - A machine-learning sleep-wake classification model using a reduced
number of features derived from photoplethysmography and activity signals [0.0]
Photoplethys (mography) has been demonstrated to be an effective signal for sleep stage inference.
In this work, we present a machine learning sleep-wake classification model based on the eXtreme Gradient Boosting algorithm.
The performance of our method was comparable to current state-of-the-art methods with a Sensitivity of 91.15 $pm$ 1.16%, Specificity of 53.66 $pm$ 1.12%, F1-score of 83.88 $pm$ 0.56%, and Kappa of 48.0 $pm$ 0.86%.
arXiv Detail & Related papers (2023-08-07T13:43:19Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Automatic Sleep Stage Classification with Cross-modal Self-supervised
Features from Deep Brain Signals [35.141080847207355]
Sleep stage classification based on deep brain recording has great potential to provide more precise treatment for patients.
We proposed an applicable cross-modal transfer learning method for sleep stage classification with implanted devices.
We tested the model with deep brain recording data from 12 patients with Parkinson's disease.
arXiv Detail & Related papers (2023-02-07T03:21:33Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - SERF: Interpretable Sleep Staging using Embeddings, Rules, and Features [0.0]
Clinician-determined sleep stages from polysomnogram (PSG) remain the gold standard for evaluating sleep quality.
We propose SERF, interpretable Sleep staging using Embeddings, Rules, and Features to read PSG.
SerF surpasses the current state-of-the-art for interpretable sleep staging by 2%.
arXiv Detail & Related papers (2022-09-21T10:01:56Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - Deep Learning for Sleep Stages Classification: Modified Rectified Linear
Unit Activation Function and Modified Orthogonal Weight Initialisation [27.681891555949672]
This research aims to increase the accuracy and reduce the learning time of Convolutional Neural Network.
The proposed system uses Leaky Rectified Linear Unit (ReLU) instead of sigmoid activation function as an activation function.
arXiv Detail & Related papers (2022-02-18T18:29:15Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
This paper explores and compares the convenience of using additional signals apart from electroencephalograms.
The best overall model, an ensemble of Depth-wise Separational Convolutional Neural Networks, has achieved an accuracy of 86.06%.
arXiv Detail & Related papers (2021-07-23T06:37:38Z) - Sleep Staging Based on Serialized Dual Attention Network [0.0]
We propose a deep learning model SDAN based on raw EEG.
It serially combines the channel attention and spatial attention mechanisms to filter and highlight key information.
It achieves excellent results in the N1 sleep stage compared to other methods.
arXiv Detail & Related papers (2021-07-18T13:18:12Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Temporal convolutional networks and transformers for classifying the
sleep stage in awake or asleep using pulse oximetry signals [0.0]
We develop a network architecture with the aim of classifying the sleep stage in awake or asleep using only HR signals from a pulse oximeter.
Transformers are able to model the sequence, learning the transition rules between sleep stages.
The overall accuracy, specificity, sensibility, and Cohen's Kappa coefficient were 90.0%, 94.9%, 78.1%, and 0.73.
arXiv Detail & Related papers (2021-01-29T22:58:33Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.