論文の概要: Blind Quality Assessment for Image Superresolution Using Deep Two-Stream
Convolutional Networks
- arxiv url: http://arxiv.org/abs/2004.06163v1
- Date: Mon, 13 Apr 2020 19:14:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 00:37:52.198525
- Title: Blind Quality Assessment for Image Superresolution Using Deep Two-Stream
Convolutional Networks
- Title(参考訳): 深部2ストリーム畳み込みネットワークを用いた画像超解像のブラインド品質評価
- Authors: Wei Zhou, Qiuping Jiang, Yuwang Wang, Zhibo Chen, Weiping Li
- Abstract要約: 我々は,非参照深部ニューラルネットワークを用いたSR画像品質評価器(DeepSRQ)を提案する。
様々な歪んだSR画像のより識別的な特徴表現を学習するために、提案したDeepSRQは2ストリームの畳み込みネットワークである。
3つの公開SR画像品質データベースの実験結果から,提案したDeepSRQの有効性と一般化能力を示す。
- 参考スコア(独自算出の注目度): 41.558981828761574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous image superresolution (SR) algorithms have been proposed for
reconstructing high-resolution (HR) images from input images with lower spatial
resolutions. However, effectively evaluating the perceptual quality of SR
images remains a challenging research problem. In this paper, we propose a
no-reference/blind deep neural network-based SR image quality assessor
(DeepSRQ). To learn more discriminative feature representations of various
distorted SR images, the proposed DeepSRQ is a two-stream convolutional network
including two subcomponents for distorted structure and texture SR images.
Different from traditional image distortions, the artifacts of SR images cause
both image structure and texture quality degradation. Therefore, we choose the
two-stream scheme that captures different properties of SR inputs instead of
directly learning features from one image stream. Considering the human visual
system (HVS) characteristics, the structure stream focuses on extracting
features in structural degradations, while the texture stream focuses on the
change in textural distributions. In addition, to augment the training data and
ensure the category balance, we propose a stride-based adaptive cropping
approach for further improvement. Experimental results on three publicly
available SR image quality databases demonstrate the effectiveness and
generalization ability of our proposed DeepSRQ method compared with
state-of-the-art image quality assessment algorithms.
- Abstract(参考訳): 空間分解能の低い入力画像から高分解能画像(HR)を再構成するための多数の画像超解像(SR)アルゴリズムが提案されている。
しかし、SR画像の知覚品質を効果的に評価することは、依然として困難な研究課題である。
本稿では,非参照深部ニューラルネットワークを用いたSR画像品質評価器(DeepSRQ)を提案する。
様々な歪SR画像のより識別的な特徴表現を学習するために,提案したDeepSRQは,変形構造とテクスチャSR画像の2つのサブコンポーネントを含む2ストリーム畳み込みネットワークである。
従来の画像歪みとは異なり、SR画像のアーチファクトは画像構造とテクスチャ品質の劣化を引き起こす。
そこで我々は,ある画像ストリームから特徴を直接学習する代わりに,SR入力の異なる特性をキャプチャする2ストリーム方式を選択する。
ヒト視覚システム(hvs)の特徴を考慮すると、構造ストリームは構造劣化の特徴抽出に焦点を合わせ、テクスチャストリームはテクスチャ分布の変化に焦点を合わせている。
さらに,学習データの強化とカテゴリーバランスの確保を目的として,さらなる改善のためのストライド適応クロッピング手法を提案する。
3つの公開SR画像品質データベースの実験結果から,最新の画像品質評価アルゴリズムと比較して提案手法の有効性と一般化性を示した。
関連論文リスト
- Perception- and Fidelity-aware Reduced-Reference Super-Resolution Image Quality Assessment [25.88845910499606]
PFIQA(Pual-branch reduce-reference SR-IQA network, ie, Perception- and Fidelity-aware SR-IQA)を提案する。
PFIQAは3つの広く使用されているSR-IQAベンチマークで現在の最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-05-15T16:09:22Z) - A No-Reference Deep Learning Quality Assessment Method for
Super-resolution Images Based on Frequency Maps [39.58198651685851]
本稿では,周波数マップに基づく非参照ディープラーニング画像品質評価手法を提案する。
まず、SRIの高周波マップ(HM)と低周波マップ(LM)を、Sobel演算子とスムーズな画像近似を用いて取得する。
提案手法は,選択した3つの超解像品質評価(SRQA)データベース上で比較したIQAモデルよりも優れている。
論文 参考訳(メタデータ) (2022-06-09T05:43:37Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Textural-Structural Joint Learning for No-Reference Super-Resolution
Image Quality Assessment [59.91741119995321]
我々は、TSNetと呼ばれる品質予測のためのテキスト情報と構造情報を共同で探索するデュアルストリームネットワークを開発した。
画像の重要な領域に注意を払っている人間の視覚システム(HVS)を模倣することにより、視覚に敏感な領域をより区別しやすくするための空間的注意機構を開発する。
実験の結果,提案したTSNetは現状のIQA法よりも視覚的品質を正確に予測し,人間の視点との整合性を示した。
論文 参考訳(メタデータ) (2022-05-27T09:20:06Z) - SPQE: Structure-and-Perception-Based Quality Evaluation for Image
Super-Resolution [24.584839578742237]
超解像技術は画像の画質を大幅に改善し、解像度を向上した。
また、これらのアルゴリズムや生成された画像を評価するための効率的なSR画像品質評価(SR-IQA)も求めている。
深層学習ベースSRでは、生成した高品質で視覚的に喜ぶ画像は、対応する低品質の画像とは異なる構造を持つ可能性がある。
論文 参考訳(メタデータ) (2022-05-07T07:52:55Z) - Structure-Preserving Image Super-Resolution [94.16949589128296]
単一画像超解像(SISR)の構造
近年の研究では、フォトリアリスティック画像の復元によるSISRの開発が進められている。
しかし、回収された画像にはいまだ望ましくない構造歪みがある。
論文 参考訳(メタデータ) (2021-09-26T08:48:27Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
画像SRと画像再スケーリングのための統合フレームワークとして階層的条件フロー(HCFlow)を提案する。
HCFlowは、LR画像と残りの高周波成分の分布を同時にモデル化することにより、HRとLR画像ペア間のマッピングを学習する。
さらに性能を高めるために、知覚的損失やGAN損失などの他の損失と、トレーニングで一般的に使用される負の対数類似損失とを組み合わせる。
論文 参考訳(メタデータ) (2021-08-11T16:11:01Z) - Structure-Preserving Super Resolution with Gradient Guidance [87.79271975960764]
単一画像超解像(SISR)の構造
最近のGAN(Generative Adversarial Network)による研究は、SISRの開発を促進している。
しかし、復元された画像には常に望ましくない構造歪みがある。
論文 参考訳(メタデータ) (2020-03-29T17:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。