論文の概要: Textural-Structural Joint Learning for No-Reference Super-Resolution
Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2205.13847v1
- Date: Fri, 27 May 2022 09:20:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 15:30:52.638064
- Title: Textural-Structural Joint Learning for No-Reference Super-Resolution
Image Quality Assessment
- Title(参考訳): 非参照超解像度画像品質評価のためのテクスチュラル・ストラクチャー・ジョイント学習
- Authors: Yuqing Liu, Qi Jia, Shanshe Wang, Siwei Ma and Wen Gao
- Abstract要約: 我々は、TSNetと呼ばれる品質予測のためのテキスト情報と構造情報を共同で探索するデュアルストリームネットワークを開発した。
画像の重要な領域に注意を払っている人間の視覚システム(HVS)を模倣することにより、視覚に敏感な領域をより区別しやすくするための空間的注意機構を開発する。
実験の結果,提案したTSNetは現状のIQA法よりも視覚的品質を正確に予測し,人間の視点との整合性を示した。
- 参考スコア(独自算出の注目度): 59.91741119995321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image super-resolution (SR) has been widely investigated in recent years.
However, it is challenging to fairly estimate the performances of various SR
methods, as the lack of reliable and accurate criteria for perceptual quality.
Existing SR image quality assessment (IQA) metrics usually concentrate on the
specific kind of degradation without distinguishing the visual sensitive areas,
which have no adaptive ability to describe the diverse SR degeneration
situations. In this paper, we focus on the textural and structural degradation
of image SR which acts as a critical role for visual perception, and design a
dual stream network to jointly explore the textural and structural information
for quality prediction, dubbed TSNet. By mimicking the human vision system
(HVS) that pays more attention to the significant areas of the image, we
develop the spatial attention mechanism to make the visual-sensitive areas more
distinguishable, which improves the prediction accuracy. Feature normalization
(F-Norm) is also developed to investigate the inherent spatial correlation of
SR features and boost the network representation capacity. Experimental results
show the proposed TSNet predicts the visual quality more accurate than the
state-of-the-art IQA methods, and demonstrates better consistency with the
human's perspective. The source code will be made available at
http://github.com/yuqing-liu-dut/NRIQA_SR.
- Abstract(参考訳): 画像超解像(SR)は近年広く研究されている。
しかし、知覚品質の信頼性と正確な基準が欠如していることから、様々なSR手法の性能を正確に推定することは困難である。
既存の SR 画像品質評価 (IQA) メトリクスは、通常、様々な SR 変性状況を記述する適応能力を持たない視覚感受性領域を区別することなく、特定の種類の劣化に焦点を当てる。
本稿では,視覚知覚において重要な役割を担う画像SRのテクスチャ的・構造的劣化に着目し,TSNetと呼ばれる品質予測のためのテクスチャ的・構造的情報を共同で探索するデュアルストリームネットワークを設計する。
画像の重要な領域に注意を払っている人間の視覚システム(HVS)を模倣することにより、視覚に敏感な領域をより区別しやすくするための空間的注意機構を開発し、予測精度を向上させる。
特徴正規化(F-Norm)も、SR特徴の空間的相関を調査し、ネットワーク表現能力を高めるために開発された。
実験の結果,提案したTSNetは現状のIQA法よりも視覚的品質を正確に予測し,人間の視点との整合性を示した。
ソースコードはhttp://github.com/yuqing-liu-dut/nriqa_srで入手できる。
関連論文リスト
- Perception- and Fidelity-aware Reduced-Reference Super-Resolution Image Quality Assessment [25.88845910499606]
PFIQA(Pual-branch reduce-reference SR-IQA network, ie, Perception- and Fidelity-aware SR-IQA)を提案する。
PFIQAは3つの広く使用されているSR-IQAベンチマークで現在の最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-05-15T16:09:22Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - Scale Guided Hypernetwork for Blind Super-Resolution Image Quality
Assessment [2.4366811507669124]
既存のブラインドSR画像品質評価(IQA)メトリクスは、単に超高解像度画像の視覚的特徴に焦点を当てているだけである。
本稿では、SR画像の品質をスケール適応的に評価するスケールガイド型ハイパーネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-04T16:17:19Z) - CiaoSR: Continuous Implicit Attention-in-Attention Network for
Arbitrary-Scale Image Super-Resolution [158.2282163651066]
本稿ではCiaoSRと呼ばれる連続的な暗黙の注意-注意ネットワークを提案する。
我々は、周辺地域の特徴のアンサンブル重みを学習するために、暗黙の注意ネットワークを明示的に設計する。
我々は、この暗黙の注意ネットワークにスケールアウェアの注意を埋め込んで、追加の非ローカル情報を活用する。
論文 参考訳(メタデータ) (2022-12-08T15:57:46Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
本稿では,統計的分布の観点から知覚空間の品質劣化をモデル化する。
品質は、深い特徴領域におけるワッサーシュタイン距離に基づいて測定される。
ニューラルネットワークの特徴に基づいて実行されるディープワッサースタイン距離(ディープWSD)は、品質汚染のより良い解釈性をもたらす。
論文 参考訳(メタデータ) (2022-08-05T02:46:12Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - SPQE: Structure-and-Perception-Based Quality Evaluation for Image
Super-Resolution [24.584839578742237]
超解像技術は画像の画質を大幅に改善し、解像度を向上した。
また、これらのアルゴリズムや生成された画像を評価するための効率的なSR画像品質評価(SR-IQA)も求めている。
深層学習ベースSRでは、生成した高品質で視覚的に喜ぶ画像は、対応する低品質の画像とは異なる構造を持つ可能性がある。
論文 参考訳(メタデータ) (2022-05-07T07:52:55Z) - Discovering "Semantics" in Super-Resolution Networks [54.45509260681529]
超解像(SR)は低レベルの視覚領域の基本的で代表的な課題である。
一般に、SRネットワークから抽出された特徴は特定の意味情報を持たないと考えられている。
SRネットワークで「セマンティック」を見つけることはできますか?
論文 参考訳(メタデータ) (2021-08-01T09:12:44Z) - Learning-Based Quality Assessment for Image Super-Resolution [25.76907513611358]
我々は,新しい半自動ラベリング手法を用いて,大規模sr画像データベースを構築する。
結果のSR画像品質データベースには、100の自然シーンの8,400の画像が含まれている。
特徴抽出にDNN(Deep Neural Networks)を用いたエンドツーエンドのDeep Image SR Quality(DISQ)モデルと、品質予測のためのFeature fusion Networkをトレーニングします。
論文 参考訳(メタデータ) (2020-12-16T04:06:27Z) - Blind Quality Assessment for Image Superresolution Using Deep Two-Stream
Convolutional Networks [41.558981828761574]
我々は,非参照深部ニューラルネットワークを用いたSR画像品質評価器(DeepSRQ)を提案する。
様々な歪んだSR画像のより識別的な特徴表現を学習するために、提案したDeepSRQは2ストリームの畳み込みネットワークである。
3つの公開SR画像品質データベースの実験結果から,提案したDeepSRQの有効性と一般化能力を示す。
論文 参考訳(メタデータ) (2020-04-13T19:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。