Fast Mutation in Crossover-based Algorithms
- URL: http://arxiv.org/abs/2004.06538v4
- Date: Tue, 1 Mar 2022 11:42:05 GMT
- Title: Fast Mutation in Crossover-based Algorithms
- Authors: Denis Antipov, Maxim Buzdalov, Benjamin Doerr
- Abstract summary: Heavy-tailed mutation operator proposed in Doerr, Le, Makhmara and Nguyen (GECCO)
A heavy-tailed mutation operator proposed in Doerr, Le, Makhmara and Nguyen (GECCO)
An empirical study shows the effectiveness of the fast mutation also on random satisfiable Max-3SAT instances.
- Score: 8.34061303235504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The heavy-tailed mutation operator proposed in Doerr, Le, Makhmara, and
Nguyen (GECCO 2017), called \emph{fast mutation} to agree with the previously
used language, so far was proven to be advantageous only in mutation-based
algorithms. There, it can relieve the algorithm designer from finding the
optimal mutation rate and nevertheless obtain a performance close to the one
that the optimal mutation rate gives.
In this first runtime analysis of a crossover-based algorithm using a
heavy-tailed choice of the mutation rate, we show an even stronger impact. For
the $(1+(\lambda,\lambda))$ genetic algorithm optimizing the OneMax benchmark
function, we show that with a heavy-tailed mutation rate a linear runtime can
be achieved. This is asymptotically faster than what can be obtained with any
static mutation rate, and is asymptotically equivalent to the runtime of the
self-adjusting version of the parameters choice of the $(1+(\lambda,\lambda))$
genetic algorithm. This result is complemented by an empirical study which
shows the effectiveness of the fast mutation also on random satisfiable
Max-3SAT instances.
Related papers
- A Flexible Evolutionary Algorithm With Dynamic Mutation Rate Archive [2.07180164747172]
We propose a new, flexible approach for dynamically maintaining successful mutation rates in evolutionary algorithms using $k$-bit flip mutations.
Rates expire when their number of unsuccessful trials has exceeded a threshold, while rates currently not present in the archive can enter it in two ways.
For the minimum selection probabilities, we suggest different options, including heavy-tailed distributions.
arXiv Detail & Related papers (2024-04-05T10:51:40Z) - Already Moderate Population Sizes Provably Yield Strong Robustness to Noise [53.27802701790209]
We show that two evolutionary algorithms can tolerate constant noise probabilities without increasing the runtime on the OneMax benchmark.
Our results are based on a novel proof argument that the noiseless offspring can be seen as a biased uniform crossover between the parent and the noisy offspring.
arXiv Detail & Related papers (2024-04-02T16:35:52Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - BiAdam: Fast Adaptive Bilevel Optimization Methods [104.96004056928474]
Bilevel optimization has attracted increased interest in machine learning due to its many applications.
We provide a useful analysis framework for both the constrained and unconstrained optimization.
arXiv Detail & Related papers (2021-06-21T20:16:40Z) - A Rank based Adaptive Mutation in Genetic Algorithm [0.0]
This paper presents an alternate approach of mutation probability generation using chromosome rank to avoid any susceptibility to fitness distribution.
Experiments are done to compare results of simple genetic algorithm (SGA) with constant mutation probability and adaptive approaches within a limited resource constraint.
arXiv Detail & Related papers (2021-04-18T12:41:33Z) - Optimal Static Mutation Strength Distributions for the $(1+\lambda)$
Evolutionary Algorithm on OneMax [1.0965065178451106]
We show that, for large enough population sizes, such optimal distributions may be surprisingly complicated and counter-intuitive.
We show that, for large enough population sizes, such optimal distributions may be surprisingly complicated and counter-intuitive.
arXiv Detail & Related papers (2021-02-09T16:56:25Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Benchmarking a $(\mu+\lambda)$ Genetic Algorithm with Configurable
Crossover Probability [4.33419118449588]
We investigate a family of $(mu+lambda)$ Genetic Algorithms (GAs) which creates offspring either from mutation or by recombining two randomly chosen parents.
By scaling the crossover probability, we can thus interpolate from a fully mutation-only algorithm towards a fully crossover-based GA.
arXiv Detail & Related papers (2020-06-10T15:22:44Z) - The $(1+(\lambda,\lambda))$ Genetic Algorithm for Permutations [0.0]
We show that the $(lambda,lambda)$ genetic algorithm finds the optimum in $O(n2)$ fitness queries.
We also present the first analysis of this algorithm on a permutation-based problem called Ham.
arXiv Detail & Related papers (2020-04-18T17:04:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.