A Flexible Evolutionary Algorithm With Dynamic Mutation Rate Archive
- URL: http://arxiv.org/abs/2404.04015v1
- Date: Fri, 5 Apr 2024 10:51:40 GMT
- Title: A Flexible Evolutionary Algorithm With Dynamic Mutation Rate Archive
- Authors: Martin S. Krejca, Carsten Witt,
- Abstract summary: We propose a new, flexible approach for dynamically maintaining successful mutation rates in evolutionary algorithms using $k$-bit flip mutations.
Rates expire when their number of unsuccessful trials has exceeded a threshold, while rates currently not present in the archive can enter it in two ways.
For the minimum selection probabilities, we suggest different options, including heavy-tailed distributions.
- Score: 2.07180164747172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new, flexible approach for dynamically maintaining successful mutation rates in evolutionary algorithms using $k$-bit flip mutations. The algorithm adds successful mutation rates to an archive of promising rates that are favored in subsequent steps. Rates expire when their number of unsuccessful trials has exceeded a threshold, while rates currently not present in the archive can enter it in two ways: (i) via user-defined minimum selection probabilities for rates combined with a successful step or (ii) via a stagnation detection mechanism increasing the value for a promising rate after the current bit-flip neighborhood has been explored with high probability. For the minimum selection probabilities, we suggest different options, including heavy-tailed distributions. We conduct rigorous runtime analysis of the flexible evolutionary algorithm on the OneMax and Jump functions, on general unimodal functions, on minimum spanning trees, and on a class of hurdle-like functions with varying hurdle width that benefit particularly from the archive of promising mutation rates. In all cases, the runtime bounds are close to or even outperform the best known results for both stagnation detection and heavy-tailed mutations.
Related papers
- Mean-Field Langevin Dynamics for Signed Measures via a Bilevel Approach [4.577104493960515]
Mean-field Langevin dynamics (MLFD) is a class of interacting particle methods that tackle convex optimization over probability measures on a manifold.
We show how to extend the MFLD framework to convex optimization problems over signed measures.
arXiv Detail & Related papers (2024-06-24T18:15:12Z) - Evolving Reliable Differentiating Constraints for the Chance-constrained Maximum Coverage Problem [8.98161858972433]
We study the classical maximum coverage problem in graphs with chance constraints.
Our goal is to evolve reliable chance constraint settings for a given graph where the performance of algorithms differs significantly.
We develop an evolutionary algorithm that provides sets of chance constraints that differentiate the performance of two search algorithms with high confidence.
arXiv Detail & Related papers (2024-05-29T05:22:31Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
We prove the first high-probability results with logarithmic dependence on the confidence level for methods for solving monotone and structured non-monotone VIPs.
Our results match the best-known ones in the light-tails case and are novel for structured non-monotone problems.
In addition, we numerically validate that the gradient noise of many practical formulations is heavy-tailed and show that clipping improves the performance of SEG/SGDA.
arXiv Detail & Related papers (2022-06-02T15:21:55Z) - Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
Methods [73.35353358543507]
Gradient Descent-Ascent (SGDA) is one of the most prominent algorithms for solving min-max optimization and variational inequalities problems (VIP)
In this paper, we propose a unified convergence analysis that covers a large variety of descent-ascent methods.
We develop several new variants of SGDA such as a new variance-reduced method (L-SVRGDA), new distributed methods with compression (QSGDA, DIANA-SGDA, VR-DIANA-SGDA), and a new method with coordinate randomization (SEGA-SGDA)
arXiv Detail & Related papers (2022-02-15T09:17:39Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
We investigate the active pure exploration problem in Markov Decision Processes.
Agent sequentially selects actions and, from the resulting system trajectory, aims at the best as fast as possible.
arXiv Detail & Related papers (2021-06-05T09:16:28Z) - A Rank based Adaptive Mutation in Genetic Algorithm [0.0]
This paper presents an alternate approach of mutation probability generation using chromosome rank to avoid any susceptibility to fitness distribution.
Experiments are done to compare results of simple genetic algorithm (SGA) with constant mutation probability and adaptive approaches within a limited resource constraint.
arXiv Detail & Related papers (2021-04-18T12:41:33Z) - Optimal Static Mutation Strength Distributions for the $(1+\lambda)$
Evolutionary Algorithm on OneMax [1.0965065178451106]
We show that, for large enough population sizes, such optimal distributions may be surprisingly complicated and counter-intuitive.
We show that, for large enough population sizes, such optimal distributions may be surprisingly complicated and counter-intuitive.
arXiv Detail & Related papers (2021-02-09T16:56:25Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - Fast Mutation in Crossover-based Algorithms [8.34061303235504]
Heavy-tailed mutation operator proposed in Doerr, Le, Makhmara and Nguyen (GECCO)
A heavy-tailed mutation operator proposed in Doerr, Le, Makhmara and Nguyen (GECCO)
An empirical study shows the effectiveness of the fast mutation also on random satisfiable Max-3SAT instances.
arXiv Detail & Related papers (2020-04-14T14:16:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.