An Application of Deep Reinforcement Learning to Algorithmic Trading
- URL: http://arxiv.org/abs/2004.06627v3
- Date: Fri, 9 Oct 2020 12:09:03 GMT
- Title: An Application of Deep Reinforcement Learning to Algorithmic Trading
- Authors: Thibaut Th\'eate, Damien Ernst
- Abstract summary: This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem.
It proposes a novel DRL trading strategy so as to maximise the resulting Sharpe ratio performance indicator on a broad range of stock markets.
The training of the resulting reinforcement learning (RL) agent is entirely based on the generation of artificial trajectories from a limited set of stock market historical data.
- Score: 4.523089386111081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This scientific research paper presents an innovative approach based on deep
reinforcement learning (DRL) to solve the algorithmic trading problem of
determining the optimal trading position at any point in time during a trading
activity in stock markets. It proposes a novel DRL trading strategy so as to
maximise the resulting Sharpe ratio performance indicator on a broad range of
stock markets. Denominated the Trading Deep Q-Network algorithm (TDQN), this
new trading strategy is inspired from the popular DQN algorithm and
significantly adapted to the specific algorithmic trading problem at hand. The
training of the resulting reinforcement learning (RL) agent is entirely based
on the generation of artificial trajectories from a limited set of stock market
historical data. In order to objectively assess the performance of trading
strategies, the research paper also proposes a novel, more rigorous performance
assessment methodology. Following this new performance assessment approach,
promising results are reported for the TDQN strategy.
Related papers
- Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for Optimizing Stock Selection and Execution [0.9553307596675155]
We introduce the Hierarchical Reinforced Trader (HRT), a novel trading strategy employing a bi-level Hierarchical Reinforcement Learning framework.
HRT integrates a Proximal Policy Optimization (PPO)-based High-Level Controller (HLC) for strategic stock selection with a Deep Deterministic Policy Gradient (DDPG)-based Low-Level Controller (LLC) tasked with optimizing trade executions to enhance portfolio value.
arXiv Detail & Related papers (2024-10-19T01:29:38Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market [0.0]
The study seeks to develop an effective strategy based on the novel framework of statistical arbitrage based on graph clustering algorithms.
The study seeks to provide an integrated approach to optimal signal detection and risk management.
arXiv Detail & Related papers (2024-06-15T17:25:32Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Analysis of frequent trading effects of various machine learning models [8.975239844705415]
The proposed algorithm employs neural network predictions to generate trading signals and execute buy and sell operations.
By harnessing the power of neural networks, the algorithm enhances the accuracy and reliability of the trading strategy.
arXiv Detail & Related papers (2023-09-14T05:17:09Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
Reinforcement Learning (RL) is a branch of machine learning where agents learn by interacting with their environment.
This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for High-Frequency Trading (HFT) scenarios.
Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns.
arXiv Detail & Related papers (2023-09-13T06:15:40Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.