Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for Optimizing Stock Selection and Execution
- URL: http://arxiv.org/abs/2410.14927v1
- Date: Sat, 19 Oct 2024 01:29:38 GMT
- Title: Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for Optimizing Stock Selection and Execution
- Authors: Zijie Zhao, Roy E. Welsch,
- Abstract summary: We introduce the Hierarchical Reinforced Trader (HRT), a novel trading strategy employing a bi-level Hierarchical Reinforcement Learning framework.
HRT integrates a Proximal Policy Optimization (PPO)-based High-Level Controller (HLC) for strategic stock selection with a Deep Deterministic Policy Gradient (DDPG)-based Low-Level Controller (LLC) tasked with optimizing trade executions to enhance portfolio value.
- Score: 0.9553307596675155
- License:
- Abstract: Leveraging Deep Reinforcement Learning (DRL) in automated stock trading has shown promising results, yet its application faces significant challenges, including the curse of dimensionality, inertia in trading actions, and insufficient portfolio diversification. Addressing these challenges, we introduce the Hierarchical Reinforced Trader (HRT), a novel trading strategy employing a bi-level Hierarchical Reinforcement Learning framework. The HRT integrates a Proximal Policy Optimization (PPO)-based High-Level Controller (HLC) for strategic stock selection with a Deep Deterministic Policy Gradient (DDPG)-based Low-Level Controller (LLC) tasked with optimizing trade executions to enhance portfolio value. In our empirical analysis, comparing the HRT agent with standalone DRL models and the S&P 500 benchmark during both bullish and bearish market conditions, we achieve a positive and higher Sharpe ratio. This advancement not only underscores the efficacy of incorporating hierarchical structures into DRL strategies but also mitigates the aforementioned challenges, paving the way for designing more profitable and robust trading algorithms in complex markets.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
This study presents a Reinforcement Learning-based portfolio management model tailored for high-risk environments.
We implement the model using the Soft Actor-Critic (SAC) agent with a Convolutional Neural Network with Multi-Head Attention.
Tested over two 16-month periods of varying market volatility, the model significantly outperformed benchmarks.
arXiv Detail & Related papers (2024-08-09T23:36:58Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Deep Reinforcement Learning for Traveling Purchaser Problems [63.37136587778153]
The traveling purchaser problem (TPP) is an important optimization problem with broad applications.
We propose a novel approach based on deep reinforcement learning (DRL), which addresses route construction and purchase planning separately.
By introducing a meta-learning strategy, the policy network can be trained stably on large-sized TPP instances.
arXiv Detail & Related papers (2024-04-03T05:32:10Z) - Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL)
We introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL.
We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices.
arXiv Detail & Related papers (2023-11-01T03:32:13Z) - Optimizing Trading Strategies in Quantitative Markets using Multi-Agent
Reinforcement Learning [11.556829339947031]
This paper explores the fusion of two established financial trading strategies, namely the constant proportion portfolio insurance ( CPPI) and the time-invariant portfolio protection (TIPP)
We introduce two novel multi-agent RL (MARL) methods, CPPI-MADDPG and TIPP-MADDPG, tailored for probing strategic trading within quantitative markets.
Our empirical findings reveal that the CPPI-MADDPG and TIPP-MADDPG strategies consistently outpace their traditional counterparts.
arXiv Detail & Related papers (2023-03-15T11:47:57Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Deep Stock Trading: A Hierarchical Reinforcement Learning Framework for
Portfolio Optimization and Order Execution [26.698261314897195]
We propose a hierarchical reinforced stock trading system for portfolio management (HRPM)
We decompose the trading process into a hierarchy of portfolio management over trade execution and train the corresponding policies.
HRPM achieves significant improvement against many state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-23T12:09:26Z) - Time your hedge with Deep Reinforcement Learning [0.0]
Deep Reinforcement Learning (DRL) can tackle this challenge by creating a dynamic dependency between market information and hedging strategies allocation decisions.
We present a realistic and augmented DRL framework that: (i) uses additional contextual information to decide an action, (ii) has a one period lag between observations and actions to account for one day lag turnover of common asset managers to rebalance their hedge, (iii) is fully tested in terms of stability and robustness thanks to a repetitive train test method called anchored walk forward training, similar in spirit to k fold cross validation for time series and (iv) allows managing leverage of our hedging
arXiv Detail & Related papers (2020-09-16T06:43:41Z) - An Application of Deep Reinforcement Learning to Algorithmic Trading [4.523089386111081]
This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem.
It proposes a novel DRL trading strategy so as to maximise the resulting Sharpe ratio performance indicator on a broad range of stock markets.
The training of the resulting reinforcement learning (RL) agent is entirely based on the generation of artificial trajectories from a limited set of stock market historical data.
arXiv Detail & Related papers (2020-04-07T14:57:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.