Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market
- URL: http://arxiv.org/abs/2406.10695v1
- Date: Sat, 15 Jun 2024 17:25:32 GMT
- Title: Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market
- Authors: Adam Korniejczuk, Robert Ćlepaczuk,
- Abstract summary: The study seeks to develop an effective strategy based on the novel framework of statistical arbitrage based on graph clustering algorithms.
The study seeks to provide an integrated approach to optimal signal detection and risk management.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study seeks to develop an effective strategy based on the novel framework of statistical arbitrage based on graph clustering algorithms. Amalgamation of quantitative and machine learning methods, including the Kelly criterion, and an ensemble of machine learning classifiers have been used to improve risk-adjusted returns and increase immunity to transaction costs over existing approaches. The study seeks to provide an integrated approach to optimal signal detection and risk management. As a part of this approach, innovative ways of optimizing take profit and stop loss functions for daily frequency trading strategies have been proposed and tested. All of the tested approaches outperformed appropriate benchmarks. The best combinations of the techniques and parameters demonstrated significantly better performance metrics than the relevant benchmarks. The results have been obtained under the assumption of realistic transaction costs, but are sensitive to changes in some key parameters.
Related papers
- A New Way: Kronecker-Factored Approximate Curvature Deep Hedging and its Benefits [0.0]
This paper advances the computational efficiency of Deep Hedging frameworks through the novel integration of Kronecker-Factored Approximate Curvature (K-FAC) optimization.
The proposed architecture couples Long Short-Term Memory (LSTM) networks with K-FAC second-order optimization.
arXiv Detail & Related papers (2024-11-22T15:19:40Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - From Variability to Stability: Advancing RecSys Benchmarking Practices [3.3331198926331784]
This paper introduces a novel benchmarking methodology to facilitate a fair and robust comparison of RecSys algorithms.
By utilizing a diverse set of $30$ open datasets, including two introduced in this work, we critically examine the influence of dataset characteristics on algorithm performance.
arXiv Detail & Related papers (2024-02-15T07:35:52Z) - Learning the Market: Sentiment-Based Ensemble Trading Agents [5.005352154557397]
We propose and study the integration of sentiment analysis and deep reinforcement learning ensemble algorithms for stock trading.
We show that our approach results in a strategy that is profitable, robust, and risk-minimal.
arXiv Detail & Related papers (2024-02-02T14:34:22Z) - An Ensemble Method of Deep Reinforcement Learning for Automated
Cryptocurrency Trading [16.78239969166596]
We propose an ensemble method to improve the generalization performance of trading strategies trained by deep reinforcement learning algorithms.
Our proposed ensemble method improves the out-of-sample performance compared with the benchmarks of a deep reinforcement learning strategy and a passive investment strategy.
arXiv Detail & Related papers (2023-07-27T04:00:09Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - A Hybrid Learning Approach to Detecting Regime Switches in Financial
Markets [0.0]
We present a novel framework for the detection of regime switches within the US financial markets.
Using a combination of cluster analysis and classification, we identify regimes in financial markets based on publicly available economic data.
We display the efficacy of the framework by constructing and assessing the performance of two trading strategies based on detected regimes.
arXiv Detail & Related papers (2021-08-05T01:15:19Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
Area under the ROC curve (AUC) is a well-known ranking metric for problems such as imbalanced learning and recommender systems.
In this paper, we start an early trial to consider the problem of learning multiclass scoring functions via optimizing multiclass AUC metrics.
arXiv Detail & Related papers (2021-07-28T05:18:10Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.