Classical Coding Approaches to Quantum Applications
- URL: http://arxiv.org/abs/2004.06834v1
- Date: Tue, 14 Apr 2020 23:31:46 GMT
- Title: Classical Coding Approaches to Quantum Applications
- Authors: Narayanan Rengaswamy
- Abstract summary: In deep-space optical communications, current receivers for the pure-state-quantum channel first measure each qubit channel output and then classically post-process the measurements.
In this dissertation we investigate a recently proposed quantum algorithm for this task, which is inspired by classical belief-propagation algorithms.
We show that the algorithm is optimal for each bit and it appears to achieve optimal performance when deciding the full transmitted message.
- Score: 2.5382095320488665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum information science strives to leverage the quantum-mechanical nature
of our universe in order to achieve large improvements in certain information
processing tasks. In deep-space optical communications, current receivers for
the pure-state classical-quantum channel first measure each qubit channel
output and then classically post-process the measurements. This approach is
sub-optimal. In this dissertation we investigate a recently proposed quantum
algorithm for this task, which is inspired by classical belief-propagation
algorithms, and analyze its performance on a simple $5$-bit code. We show that
the algorithm is optimal for each bit and it appears to achieve optimal
performance when deciding the full transmitted message. We also provide
explicit circuits for the algorithm in terms of standard gates. This suggests a
near-term quantum communication advantage over the aforementioned sub-optimal
scheme.
Quantum error correction is vital to building a universal fault-tolerant
quantum computer. We propose an efficient algorithm that can translate a given
logical Clifford operation on a stabilizer code into all (equivalence classes
of) physical Clifford circuits that realize that operation. In order to achieve
universality, one also needs to implement at least one non-Clifford logical
operation. So, we develop a mathematical framework for a large subset of
diagonal operations in the Clifford hierarchy, which we call Quadratic Form
Diagonal (QFD) gates. Then we use the QFD formalism to characterize all
stabilizer codes whose code spaces are preserved under the transversal action
of the non-Clifford $T$ gates on the physical qubits. We also discuss a few
purely-classical coding problems motivated by transversal $T$ gates. A
conscious effort has been made to keep this dissertation self-contained, by
including necessary background material on quantum information and computation.
Related papers
- A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - An Optimized Quantum Implementation of ISD on Scalable Quantum Resources [2.274915755738124]
We show that Prange's ISD algorithm can be implemented rather efficiently on a quantum computer.
We leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs.
arXiv Detail & Related papers (2021-12-12T06:01:10Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
The lackadaisical quantum walk is an algorithm developed to search graph structures whose vertices have a self-loop of weight $l$.
This paper addresses several issues related to applying the lackadaisical quantum walk to search for multiple solutions on grids successfully.
arXiv Detail & Related papers (2021-06-11T09:43:09Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
We introduce two ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL.
AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics.
Our technique is generic and can be useful for a wide variety of quantum algorithms.
arXiv Detail & Related papers (2021-02-19T16:20:31Z) - Quadratic Clifford expansion for efficient benchmarking and
initialization of variational quantum algorithms [0.8808007156832224]
Variational quantum algorithms are considered to be appealing applications of near-term quantum computers.
We propose a perturbative approach for efficient benchmarking of variational quantum algorithms.
arXiv Detail & Related papers (2020-11-19T16:09:00Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.