A quantum annealing approach to the minimum distance problem of quantum codes
- URL: http://arxiv.org/abs/2404.17703v3
- Date: Wed, 3 Jul 2024 19:39:24 GMT
- Title: A quantum annealing approach to the minimum distance problem of quantum codes
- Authors: Refat Ismail, Ashish Kakkar, Anatoly Dymarsky,
- Abstract summary: We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error-correcting codes (QECCs) is at the heart of fault-tolerant quantum computing. As the size of quantum platforms is expected to grow, one of the open questions is to design new optimal codes of ever-increasing size. A related challenge is to ``certify'' the quality of a given code by evaluating its minimum distance, a quantity characterizing code's capacity to preserve quantum information. This problem is known to be NP-hard. Here we propose to harness the power of contemporary quantum platforms to address this question, and in this way help design quantum platforms of the future. Namely, we introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization (QUBO) problem and leveraging established QUBO algorithms and heuristics as well as quantum annealing (QA) to address the latter. The reformulation as a QUBO introduces only a logarithmic multiplicative overhead in the required number of variables. We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer as well as hybrid quantum-classical algorithm Qbsolv. We found that the hybrid approach demonstrates competitive performance, on par with the best available classical algorithms to solve QUBO. In a practical sense, the QUBO-based approach is currently lagging behind the best deterministic minimal distance algorithms, however this advantage may disappear as the size of the platforms grows.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Making the cut: two methods for breaking down a quantum algorithm [0.0]
It remains a major challenge to find quantum algorithms that may reach computational advantage in the present era of noisy, small-scale quantum hardware.
We identify and characterize two methods of breaking down'' quantum algorithms into rounds of lower (query) depth.
We show that for the first problem parallelization offers the best performance, while for the second is the better choice.
arXiv Detail & Related papers (2023-05-17T18:00:06Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
We show the largest-to-date execution of a quantum optimization algorithm that preserves constraints on quantum hardware.
We execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159.
We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.
arXiv Detail & Related papers (2022-06-13T16:21:04Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
We tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems.
We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
Our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation.
arXiv Detail & Related papers (2021-07-22T08:12:49Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.