A function space analysis of finite neural networks with insights from
sampling theory
- URL: http://arxiv.org/abs/2004.06989v2
- Date: Fri, 25 Feb 2022 18:58:49 GMT
- Title: A function space analysis of finite neural networks with insights from
sampling theory
- Authors: Raja Giryes
- Abstract summary: We show that the function space generated by multi-layer networks with non-expansive activation functions is smooth.
Under the assumption that the input is band-limited, we provide novel error bounds.
We analyze both deterministic uniform and random sampling showing the advantage of the former.
- Score: 41.07083436560303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work suggests using sampling theory to analyze the function space
represented by neural networks. First, it shows, under the assumption of a
finite input domain, which is the common case in training neural networks, that
the function space generated by multi-layer networks with non-expansive
activation functions is smooth. This extends over previous works that show
results for the case of infinite width ReLU networks. Then, under the
assumption that the input is band-limited, we provide novel error bounds for
univariate neural networks. We analyze both deterministic uniform and random
sampling showing the advantage of the former.
Related papers
- Points of non-linearity of functions generated by random neural networks [0.0]
We consider functions from the real numbers to the real numbers, output by a neural network with 1 hidden activation layer, arbitrary width, and ReLU activation function.
We compute the expected distribution of the points of non-linearity.
arXiv Detail & Related papers (2023-04-19T17:40:19Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Probabilistic Verification of ReLU Neural Networks via Characteristic
Functions [11.489187712465325]
We use ideas from probability theory in the frequency domain to provide probabilistic verification guarantees for ReLU neural networks.
We interpret a (deep) feedforward neural network as a discrete dynamical system over a finite horizon.
We obtain the corresponding cumulative distribution function of the output set, which can be used to check if the network is performing as expected.
arXiv Detail & Related papers (2022-12-03T05:53:57Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks [19.216784367141972]
We study the problem of estimating an unknown function from noisy data using shallow (single-hidden layer) ReLU neural networks.
We quantify the performance of these neural network estimators when the data-generating function belongs to the space of functions of second-order bounded variation in the Radon domain.
arXiv Detail & Related papers (2021-09-18T05:56:06Z) - On the space of coefficients of a Feed Forward Neural Network [0.0]
We prove that given a neural network $mathcalN$ with piece-wise linear activation, the space of coefficients describing all equivalent neural networks is given by a semialgebraic set.
This result is obtained by studying different representations of a given piece-wise linear function using the Tarski-Seidenberg theorem.
arXiv Detail & Related papers (2021-09-07T22:47:50Z) - Linear approximability of two-layer neural networks: A comprehensive
analysis based on spectral decay [4.042159113348107]
We first consider the case of single neuron and show that the linear approximability, quantified by the Kolmogorov width, is controlled by the eigenvalue decay of an associate kernel.
We show that similar results also hold for two-layer neural networks.
arXiv Detail & Related papers (2021-08-10T23:30:29Z) - Deep neural network approximation of analytic functions [91.3755431537592]
entropy bound for the spaces of neural networks with piecewise linear activation functions.
We derive an oracle inequality for the expected error of the considered penalized deep neural network estimators.
arXiv Detail & Related papers (2021-04-05T18:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.