Points of non-linearity of functions generated by random neural networks
- URL: http://arxiv.org/abs/2304.09837v1
- Date: Wed, 19 Apr 2023 17:40:19 GMT
- Title: Points of non-linearity of functions generated by random neural networks
- Authors: David Holmes
- Abstract summary: We consider functions from the real numbers to the real numbers, output by a neural network with 1 hidden activation layer, arbitrary width, and ReLU activation function.
We compute the expected distribution of the points of non-linearity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider functions from the real numbers to the real numbers, output by a
neural network with 1 hidden activation layer, arbitrary width, and ReLU
activation function. We assume that the parameters of the neural network are
chosen uniformly at random with respect to various probability distributions,
and compute the expected distribution of the points of non-linearity. We use
these results to explain why the network may be biased towards outputting
functions with simpler geometry, and why certain functions with low
information-theoretic complexity are nonetheless hard for a neural network to
approximate.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
We introduce the first algorithm to construct coresets for emphRBFNNs, i.e., small weighted subsets that approximate the loss of the input data on any radial basis function network.
We then perform empirical evaluations on function approximation and dataset subset selection on popular network architectures and data sets.
arXiv Detail & Related papers (2023-03-09T10:08:34Z) - Probabilistic Verification of ReLU Neural Networks via Characteristic
Functions [11.489187712465325]
We use ideas from probability theory in the frequency domain to provide probabilistic verification guarantees for ReLU neural networks.
We interpret a (deep) feedforward neural network as a discrete dynamical system over a finite horizon.
We obtain the corresponding cumulative distribution function of the output set, which can be used to check if the network is performing as expected.
arXiv Detail & Related papers (2022-12-03T05:53:57Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
We consider the mean squared error analysis for deep convolutional neural networks.
We show that, for additive ridge functions, convolutional neural networks followed by one fully connected layer with ReLU activation functions can reach optimal mini-max rates.
arXiv Detail & Related papers (2022-02-24T14:22:32Z) - Optimal Approximation with Sparse Neural Networks and Applications [0.0]
We use deep sparsely connected neural networks to measure the complexity of a function class in $L(mathbb Rd)$.
We also introduce representation system - a countable collection of functions to guide neural networks.
We then analyse the complexity of a class called $beta$ cartoon-like functions using rate-distortion theory and wedgelets construction.
arXiv Detail & Related papers (2021-08-14T05:14:13Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - No one-hidden-layer neural network can represent multivariable functions [0.0]
In a function approximation with a neural network, an input dataset is mapped to an output index by optimizing the parameters of each hidden-layer unit.
We present constraints on the parameters and its second derivative by constructing a continuum version of a one-hidden-layer neural network with the rectified linear unit (ReLU) activation function.
arXiv Detail & Related papers (2020-06-19T06:46:54Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z) - A function space analysis of finite neural networks with insights from
sampling theory [41.07083436560303]
We show that the function space generated by multi-layer networks with non-expansive activation functions is smooth.
Under the assumption that the input is band-limited, we provide novel error bounds.
We analyze both deterministic uniform and random sampling showing the advantage of the former.
arXiv Detail & Related papers (2020-04-15T10:25:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.