Probabilistic Verification of ReLU Neural Networks via Characteristic
Functions
- URL: http://arxiv.org/abs/2212.01544v1
- Date: Sat, 3 Dec 2022 05:53:57 GMT
- Title: Probabilistic Verification of ReLU Neural Networks via Characteristic
Functions
- Authors: Joshua Pilipovsky, Vignesh Sivaramakrishnan, Meeko M. K. Oishi,
Panagiotis Tsiotras
- Abstract summary: We use ideas from probability theory in the frequency domain to provide probabilistic verification guarantees for ReLU neural networks.
We interpret a (deep) feedforward neural network as a discrete dynamical system over a finite horizon.
We obtain the corresponding cumulative distribution function of the output set, which can be used to check if the network is performing as expected.
- Score: 11.489187712465325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Verifying the input-output relationships of a neural network so as to achieve
some desired performance specification is a difficult, yet important, problem
due to the growing ubiquity of neural nets in many engineering applications. We
use ideas from probability theory in the frequency domain to provide
probabilistic verification guarantees for ReLU neural networks. Specifically,
we interpret a (deep) feedforward neural network as a discrete dynamical system
over a finite horizon that shapes distributions of initial states, and use
characteristic functions to propagate the distribution of the input data
through the network. Using the inverse Fourier transform, we obtain the
corresponding cumulative distribution function of the output set, which can be
used to check if the network is performing as expected given any random point
from the input set. The proposed approach does not require distributions to
have well-defined moments or moment generating functions. We demonstrate our
proposed approach on two examples, and compare its performance to related
approaches.
Related papers
- An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
This paper presents a sample-free moment propagation technique to accurately characterize the input-output distributions of neural networks.
A key enabler of our technique is an analytic solution for the covariance of random variables passed through nonlinear activation functions.
The wide applicability and merits of the proposed technique are shown in experiments analyzing the input-output distributions of trained neural networks and training Bayesian neural networks.
arXiv Detail & Related papers (2024-03-24T14:08:24Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Learning Theory of Distribution Regression with Neural Networks [6.961253535504979]
We establish an approximation theory and a learning theory of distribution regression via a fully connected neural network (FNN)
In contrast to the classical regression methods, the input variables of distribution regression are probability measures.
arXiv Detail & Related papers (2023-07-07T09:49:11Z) - Points of non-linearity of functions generated by random neural networks [0.0]
We consider functions from the real numbers to the real numbers, output by a neural network with 1 hidden activation layer, arbitrary width, and ReLU activation function.
We compute the expected distribution of the points of non-linearity.
arXiv Detail & Related papers (2023-04-19T17:40:19Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
We propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors.
We propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection.
arXiv Detail & Related papers (2021-05-18T15:51:24Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Probabilistic Numeric Convolutional Neural Networks [80.42120128330411]
Continuous input signals like images and time series that are irregularly sampled or have missing values are challenging for existing deep learning methods.
We propose Probabilistic Convolutional Neural Networks which represent features as Gaussian processes (GPs)
We then define a convolutional layer as the evolution of a PDE defined on this GP, followed by a nonlinearity.
In experiments we show that our approach yields a $3times$ reduction of error from the previous state of the art on the SuperPixel-MNIST dataset and competitive performance on the medical time2012 dataset PhysioNet.
arXiv Detail & Related papers (2020-10-21T10:08:21Z) - The Ridgelet Prior: A Covariance Function Approach to Prior
Specification for Bayesian Neural Networks [4.307812758854161]
We construct a prior distribution for the parameters of a network that approximates the posited Gaussian process in the output space of the network.
This establishes the property that a Bayesian neural network can approximate any Gaussian process whose covariance function is sufficiently regular.
arXiv Detail & Related papers (2020-10-16T16:39:45Z) - A function space analysis of finite neural networks with insights from
sampling theory [41.07083436560303]
We show that the function space generated by multi-layer networks with non-expansive activation functions is smooth.
Under the assumption that the input is band-limited, we provide novel error bounds.
We analyze both deterministic uniform and random sampling showing the advantage of the former.
arXiv Detail & Related papers (2020-04-15T10:25:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.