Contextual Pyramid Attention Network for Building Segmentation in Aerial
Imagery
- URL: http://arxiv.org/abs/2004.07018v1
- Date: Wed, 15 Apr 2020 11:36:26 GMT
- Title: Contextual Pyramid Attention Network for Building Segmentation in Aerial
Imagery
- Authors: Clint Sebastian, Raffaele Imbriaco, Egor Bondarev, Peter H.N. de With
- Abstract summary: Building extraction from aerial images has several applications in problems such as urban planning, change detection, and disaster management.
We propose to improve building segmentation of different sizes by capturing long-range dependencies using contextual pyramid attention (CPA)
Our method improves 1.8 points over current state-of-the-art methods and 12.6 points higher than existing baselines without any post-processing.
- Score: 12.241693880896348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building extraction from aerial images has several applications in problems
such as urban planning, change detection, and disaster management. With the
increasing availability of data, Convolutional Neural Networks (CNNs) for
semantic segmentation of remote sensing imagery has improved significantly in
recent years. However, convolutions operate in local neighborhoods and fail to
capture non-local features that are essential in semantic understanding of
aerial images. In this work, we propose to improve building segmentation of
different sizes by capturing long-range dependencies using contextual pyramid
attention (CPA). The pathways process the input at multiple scales efficiently
and combine them in a weighted manner, similar to an ensemble model. The
proposed method obtains state-of-the-art performance on the Inria Aerial Image
Labelling Dataset with minimal computation costs. Our method improves 1.8
points over current state-of-the-art methods and 12.6 points higher than
existing baselines on the Intersection over Union (IoU) metric without any
post-processing. Code and models will be made publicly available.
Related papers
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - Feature transforms for image data augmentation [74.12025519234153]
In image classification, many augmentation approaches utilize simple image manipulation algorithms.
In this work, we build ensembles on the data level by adding images generated by combining fourteen augmentation approaches.
Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method.
arXiv Detail & Related papers (2022-01-24T14:12:29Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
We propose a Scale-invariant neural network (Sci-Net) that is able to segment buildings present in aerial images at different spatial resolutions.
Specifically, we modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid Pooling (ASPP) to extract fine-grained multi-scale representations.
arXiv Detail & Related papers (2021-11-12T16:45:20Z) - Crowd Counting via Perspective-Guided Fractional-Dilation Convolution [75.36662947203192]
This paper proposes a novel convolution neural network-based crowd counting method, termed Perspective-guided Fractional-Dilation Network (PFDNet)
By modeling the continuous scale variations, the proposed PFDNet is able to select the proper fractional dilation kernels for adapting to different spatial locations.
It significantly improves the flexibility of the state-of-the-arts that only consider the discrete representative scales.
arXiv Detail & Related papers (2021-07-08T07:57:00Z) - Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks [28.32775611169636]
We introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation.
A novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features.
Our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU)
arXiv Detail & Related papers (2020-08-10T11:00:19Z) - End-to-End Trainable Deep Active Contour Models for Automated Image
Segmentation: Delineating Buildings in Aerial Imagery [12.442780294349049]
Trainable Deep Active Contours (TDACs) is an automatic image segmentation framework that unites Convolutional Networks (CNNs) and Active Contour Models (ACMs)
TDAC yields fast, accurate, and fully automatic simultaneous delineation of arbitrarily many buildings in the image.
arXiv Detail & Related papers (2020-07-22T21:27:17Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
We propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations.
We introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism.
arXiv Detail & Related papers (2020-01-09T07:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.