論文の概要: LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from
Explanation
- arxiv url: http://arxiv.org/abs/2004.07499v1
- Date: Thu, 16 Apr 2020 07:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 20:43:35.156316
- Title: LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from
Explanation
- Title(参考訳): LEAN-LIFE:説明から学ぶためのラベル有効アノテーションフレームワーク
- Authors: Dong-Ho Lee, Rahul Khanna, Bill Yuchen Lin, Jamin Chen, Seyeon Lee,
Qinyuan Ye, Elizabeth Boschee, Leonardo Neves, Xiang Ren
- Abstract要約: LEAN-LIFEは、シーケンスラベリングと分類タスクのためのWebベースのラベル有効アノテーションフレームワークである。
我々のフレームワークは、この強化された監視技術を利用した最初のものであり、3つの重要なタスクに役立ちます。
- 参考スコア(独自算出の注目度): 40.72453599376169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Successfully training a deep neural network demands a huge corpus of labeled
data. However, each label only provides limited information to learn from and
collecting the requisite number of labels involves massive human effort. In
this work, we introduce LEAN-LIFE, a web-based, Label-Efficient AnnotatioN
framework for sequence labeling and classification tasks, with an easy-to-use
UI that not only allows an annotator to provide the needed labels for a task,
but also enables LearnIng From Explanations for each labeling decision. Such
explanations enable us to generate useful additional labeled data from
unlabeled instances, bolstering the pool of available training data. On three
popular NLP tasks (named entity recognition, relation extraction, sentiment
analysis), we find that using this enhanced supervision allows our models to
surpass competitive baseline F1 scores by more than 5-10 percentage points,
while using 2X times fewer labeled instances. Our framework is the first to
utilize this enhanced supervision technique and does so for three important
tasks -- thus providing improved annotation recommendations to users and an
ability to build datasets of (data, label, explanation) triples instead of the
regular (data, label) pair.
- Abstract(参考訳): ディープニューラルネットワークのトレーニングに成功すると、ラベル付きデータの巨大なコーパスが要求される。
しかし、各ラベルは、必要なラベルの数を収集し学習するための限られた情報しか提供しない。
本研究では,Web ベースでシーケンスラベリングおよび分類タスクのためのラベル効率の良い AnnotatioN フレームワークである LEAN-LIFE を紹介し,アノテータがタスクに必要なラベルを提供するだけでなく,ラベル決定毎にLearningIng From Explanations を可能にする。
このような説明により、ラベルのないインスタンスから有用なラベル付きデータを生成し、利用可能なトレーニングデータのプールを強化することができます。
一般的な3つのNLPタスク(エンティティ認識、関係抽出、感情分析)において、この強化されたインスペクションを使用することで、モデルがラベル付きインスタンスを2倍少なくしながら、競合するベースラインF1スコアを5~10ポイント以上越えることができることがわかった。
私たちのフレームワークは、この強化された監督テクニックを最初に利用し、3つの重要なタスク -- により、ユーザにアノテーションの推奨を改善し、通常の(データ、ラベル、説明)ペアの代わりに(データ、ラベル)トリプルのデータセットを構築する機能を提供します。
関連論文リスト
- Substituting Data Annotation with Balanced Updates and Collective Loss
in Multi-label Text Classification [19.592985329023733]
MLTC(Multi-label text classification)は、あるテキストに複数のラベルを割り当てるタスクである。
本報告では,MLTCの問題点を,ラベル数に比例して,利用可能な監視信号の大きさが線形であるアノテーションフリーおよび希少アノテーション設定で検討する。
提案手法は,(1)事前学習した言語モデルを用いて,入力テキストを事前ラベル候補の集合にマッピングし,(2)ラベル記述による署名付きラベル依存グラフの計算,(3)ラベル依存グラフに沿ったメッセージパスによる事前ラベル候補の更新を行う。
論文 参考訳(メタデータ) (2023-09-24T04:12:52Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
モデル学習プロセスにおける自己監督型学習(SSL)と新しい自己監督型関係関係(R2)分類タスクの設計
テキスト分類とR2分類を最適化対象として扱うテキスト分類のための関係学習ネットワーク(R2-Net)の関係について検討する。
ラベルセマンティックラーニングのためのマルチアスペクト記述を得るためのWordNetからの外部知識。
論文 参考訳(メタデータ) (2023-06-15T02:19:34Z) - You Only Need One Thing One Click: Self-Training for Weakly Supervised
3D Scene Understanding [107.06117227661204]
私たちはOne Thing One Click''を提案する。つまり、アノテーションはオブジェクトごとに1つのポイントをラベル付けするだけです。
グラフ伝搬モジュールによって促進されるトレーニングとラベル伝搬を反復的に行う。
我々のモデルは、ポイントクラスタリング戦略を備えた3Dインスタンスセグメンテーションと互換性がある。
論文 参考訳(メタデータ) (2023-03-26T13:57:00Z) - PointMatch: A Consistency Training Framework for Weakly Supervised
Semantic Segmentation of 3D Point Clouds [117.77841399002666]
本稿では,データ自体から十分な情報を探索するために整合性正規化を適用することで,データとラベルの両面に立つ新しいフレームワークであるPointMatchを提案する。
提案したPointMatchは、ScanNet-v2データセットとS3DISデータセットの両方で、様々な弱い教師付きスキームの下で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-02-22T07:26:31Z) - Meta-Learning for Multi-Label Few-Shot Classification [38.222736913855115]
この研究は、モデルがクエリ内で複数のラベルを予測することを学習するマルチラベルメタラーニングの問題をターゲットにしている。
ニューラルネットワークモジュールを導入し,リレーショナル推論を利用してサンプルのラベル数を推定する。
総合的な実験により,提案手法とニューラルラベルカウントモジュール(NLC)を併用したラベルプロパゲーションアルゴリズムが選択方法として検討されることが示唆された。
論文 参考訳(メタデータ) (2021-10-26T08:47:48Z) - Learning with Different Amounts of Annotation: From Zero to Many Labels [19.869498599986006]
NLPシステムのトレーニングは通常、例ごとに1つの人間ラベルを持つ注釈付きデータへのアクセスを前提としている。
我々は、トレーニング例の小さなサブセットに対して、サンプル毎に複数のラベルを割り当てる、新しいアノテーション分布スキームについて検討する。
このような複数ラベルの例を、より少ない例に注釈をつけるコストで導入することは、自然言語推論タスクとエンティティ型付けタスクに明らかな利益をもたらす。
論文 参考訳(メタデータ) (2021-09-09T16:48:41Z) - TagRuler: Interactive Tool for Span-Level Data Programming by
Demonstration [1.4050836886292872]
データプログラミングは、プログラミングの方法を知っているユーザーにのみアクセス可能だった。
我々はTagRulerという新しいツールを構築し、アノテータがプログラミングなしでスパンレベルのラベリング関数を簡単に構築できるようにする。
論文 参考訳(メタデータ) (2021-06-24T04:49:42Z) - One Thing One Click: A Self-Training Approach for Weakly Supervised 3D
Semantic Segmentation [78.36781565047656]
私たちは、アノテーションーがオブジェクトごとに1ポイントだけラベルを付ける必要があることを意味する「One Thing One Click」を提案します。
グラフ伝搬モジュールによって促進されるトレーニングとラベル伝搬を反復的に行う。
私たちの結果は、完全に監督されたものと同等です。
論文 参考訳(メタデータ) (2021-04-06T02:27:25Z) - Adaptive Self-training for Few-shot Neural Sequence Labeling [55.43109437200101]
ニューラルシークエンスラベリングモデルにおけるラベル不足問題に対処する手法を開発した。
自己学習は、大量のラベルのないデータから学ぶための効果的なメカニズムとして機能する。
メタラーニングは、適応的なサンプル再重み付けにおいて、ノイズのある擬似ラベルからのエラー伝播を軽減するのに役立つ。
論文 参考訳(メタデータ) (2020-10-07T22:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。