論文の概要: Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks
- arxiv url: http://arxiv.org/abs/2004.07601v3
- Date: Tue, 8 Jun 2021 17:54:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 21:10:05.673203
- Title: Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks
- Title(参考訳): 注意関係ネットワークを用いた自殺観念と精神障害検出
- Authors: Shaoxiong Ji, Xue Li, Zi Huang, and Erik Cambria
- Abstract要約: 本稿では,語彙に基づく感情スコアと潜在トピックを用いたテキスト表現を強化する。
本研究は,自殺思考と精神障害を関連するリスク指標を用いて検出する関係ネットワークを提案する。
- 参考スコア(独自算出の注目度): 43.2802002858859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mental health is a critical issue in modern society, and mental disorders
could sometimes turn to suicidal ideation without effective treatment. Early
detection of mental disorders and suicidal ideation from social content
provides a potential way for effective social intervention. However,
classifying suicidal ideation and other mental disorders is challenging as they
share similar patterns in language usage and sentimental polarity. This paper
enhances text representation with lexicon-based sentiment scores and latent
topics and proposes using relation networks to detect suicidal ideation and
mental disorders with related risk indicators. The relation module is further
equipped with the attention mechanism to prioritize more critical relational
features. Through experiments on three real-world datasets, our model
outperforms most of its counterparts.
- Abstract(参考訳): メンタルヘルスは現代社会において重要な問題であり、精神疾患は効果的な治療なしに自殺的な考えに変わることがある。
精神障害の早期発見と社会的コンテンツからの自殺観念は、効果的な社会的介入の潜在的方法となる。
しかし、自殺イデオロギーやその他の精神障害の分類は、言語の使用と感情的極性の類似のパターンを共有するため、困難である。
本稿では,語彙に基づく感情スコアと潜在トピックを用いたテキスト表現を強化し,関連するリスク指標による自殺観念と精神障害を検出するための関係ネットワークを提案する。
関連モジュールはさらに、より重要なリレーショナルフィーチャを優先するアテンションメカニズムを備えている。
実世界の3つのデータセットの実験を通じて、私たちのモデルは、その大半よりも優れています。
関連論文リスト
- Deep Learning-Based Feature Fusion for Emotion Analysis and Suicide Risk Differentiation in Chinese Psychological Support Hotlines [18.81118590515144]
本研究では,ホットライン相互作用中に表現される感情を分析し理解するために,ピッチ音響特徴と深層学習に基づく特徴を組み合わせる手法を提案する。
中国最大の心理支援ホットラインのデータを用いて、負のバイナリ感情分類においてF1スコア79.13%を達成した。
本研究は, 心理的評価尺度と自殺リスク予測の新たな特徴として, 感情変動強度と頻度が有効であることが示唆された。
論文 参考訳(メタデータ) (2025-01-15T10:09:38Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
ストレスと抑うつは日々のタスクにおけるエンゲージメントに影響を与え、彼らの相互作用を理解する必要性を強調します。
この調査は、ストレス、抑うつ、エンゲージメントを分析する計算手法を同時に探求した最初のものである。
論文 参考訳(メタデータ) (2024-03-09T11:16:09Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
既存のアプローチは、苦痛の感情の原因を無視します。
彼らは、話者間の相互作用における感情的ダイナミクスよりも、探究者自身の精神状態に焦点を当てている。
本稿では、まず、苦痛の感情要因と、その原因によって引き起こされる感情効果を認識する新しいフレームワークCauESCを提案する。
論文 参考訳(メタデータ) (2024-01-31T11:30:24Z) - Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted
Outcomes to Analyze Longitudinal Social Media Data [2.76101452577748]
新型コロナウイルスのパンデミックは世界中でメンタルヘルスの危機をエスカレートしている。
自殺は、恥、虐待、放棄、うつ病のような精神状態などの社会的要因によって引き起こされる。
これらの状況が発展するにつれて、自殺的思考の兆候がソーシャルメディアの相互作用に現れる可能性がある。
論文 参考訳(メタデータ) (2023-12-13T17:15:12Z) - LOST: A Mental Health Dataset of Low Self-esteem in Reddit Posts [4.6071451559137175]
低自尊心と対人欲求は、うつ病や自殺の試みに大きな影響を及ぼす。
個人は、孤独を増進し緩和するためにソーシャルメディア上の社会的つながりを求めます。
Reddit上での低自己評価を研究・検出するために,心理学的根拠と専門的な注釈付きデータセット,LoST: Low Self esTeemを紹介した。
論文 参考訳(メタデータ) (2023-06-08T23:52:35Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - Quantifying the Suicidal Tendency on Social Media: A Survey [0.0]
自殺は早産だが予防可能な死因の1つである。
近年の研究では、ソーシャルメディアデータのマイニングが、利用者の自殺傾向の定量化に役立っていることが示されている。
本書は、精神医療の分類を解明し、ソーシャルメディアデータにおける自殺傾向の定量化の可能性を検討するための最近の試みを強調している。
論文 参考訳(メタデータ) (2021-10-04T12:26:14Z) - Building and Using Personal Knowledge Graph to Improve Suicidal Ideation
Detection on Social Media [4.769234388745917]
ソーシャルメディア上での自殺思考検出のための深層ニューラルネットワークを用いた,自殺指向の知識グラフの構築と統合を行う。
ソーシャルメディアに基づく自殺思考検出は93%以上の精度を達成できることを示す。
これらのカテゴリでは、投稿されたテキスト、ストレスレベル、ストレス持続時間、投稿された画像、反響的な思考が自殺的思考の検出に寄与する。
論文 参考訳(メタデータ) (2020-12-16T18:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。