論文の概要: Deep Learning-Based Feature Fusion for Emotion Analysis and Suicide Risk Differentiation in Chinese Psychological Support Hotlines
- arxiv url: http://arxiv.org/abs/2501.08696v1
- Date: Wed, 15 Jan 2025 10:09:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:44.199084
- Title: Deep Learning-Based Feature Fusion for Emotion Analysis and Suicide Risk Differentiation in Chinese Psychological Support Hotlines
- Title(参考訳): 中国の心理支援ホットラインにおける感情分析と自殺リスクの鑑別のための深層学習に基づく特徴融合
- Authors: Han Wang, Jianqiang Li, Qing Zhao, Zhonglong Chen, Changwei Song, Jing Tang, Yuning Huang, Wei Zhai, Yongsheng Tong, Guanghui Fu,
- Abstract要約: 本研究では,ホットライン相互作用中に表現される感情を分析し理解するために,ピッチ音響特徴と深層学習に基づく特徴を組み合わせる手法を提案する。
中国最大の心理支援ホットラインのデータを用いて、負のバイナリ感情分類においてF1スコア79.13%を達成した。
本研究は, 心理的評価尺度と自殺リスク予測の新たな特徴として, 感情変動強度と頻度が有効であることが示唆された。
- 参考スコア(独自算出の注目度): 18.81118590515144
- License:
- Abstract: Mental health is a critical global public health issue, and psychological support hotlines play a pivotal role in providing mental health assistance and identifying suicide risks at an early stage. However, the emotional expressions conveyed during these calls remain underexplored in current research. This study introduces a method that combines pitch acoustic features with deep learning-based features to analyze and understand emotions expressed during hotline interactions. Using data from China's largest psychological support hotline, our method achieved an F1-score of 79.13% for negative binary emotion classification.Additionally, the proposed approach was validated on an open dataset for multi-class emotion classification,where it demonstrated better performance compared to the state-of-the-art methods. To explore its clinical relevance, we applied the model to analysis the frequency of negative emotions and the rate of emotional change in the conversation, comparing 46 subjects with suicidal behavior to those without. While the suicidal group exhibited more frequent emotional changes than the non-suicidal group, the difference was not statistically significant.Importantly, our findings suggest that emotional fluctuation intensity and frequency could serve as novel features for psychological assessment scales and suicide risk prediction.The proposed method provides valuable insights into emotional dynamics and has the potential to advance early intervention and improve suicide prevention strategies through integration with clinical tools and assessments The source code is publicly available at https://github.com/Sco-field/Speechemotionrecognition/tree/main.
- Abstract(参考訳): メンタルヘルスは世界的に重要な公衆衛生問題であり、メンタルヘルス支援や自殺リスクの早期発見において、心理的サポートホットラインが重要な役割を担っている。
しかし、これらの呼びかけで伝えられた感情表現は、現在でも研究が過小評価されている。
本研究では,ホットライン相互作用中に表現される感情を分析し理解するために,ピッチ音響特徴と深層学習に基づく特徴を組み合わせる手法を提案する。
中国最大の心理支援ホットラインのデータを用いて、負のバイナリ感情分類のためのF1スコア79.13%を達成し、さらに、マルチクラスの感情分類のためのオープンデータセットを用いて提案手法の有効性を検証した。
その臨床的関連性を検討するため,46名の被験者を自殺行動と非自殺行動と比較し,否定的感情の頻度と会話の感情変化の頻度を分析した。
自殺集団は非自殺集団よりも頻繁な感情変化を示したが,その違いは統計的に有意なものではなく,心理的評価尺度や自殺リスク予測の新たな特徴として,感情変動強度と頻度が有効である可能性が示唆された。本手法は,早期介入の可能性を秘めており,臨床ツールや評価との統合による自殺予防戦略を早期に改善する可能性がある。ソースコードはhttps://github.com/Sco-field/Speechemotionrecognition/tree/mainで公開されている。
関連論文リスト
- An Exploratory Deep Learning Approach for Predicting Subsequent Suicidal Acts in Chinese Psychological Support Hotlines [13.59130559079134]
自殺リスク評価のためのスケールベースの予測手法の精度は、オペレーターの専門性によって大きく異なる可能性がある。
本研究は,中国における自殺リスクを予測するために,長期音声データにディープラーニングを適用した最初の事例である。
論文 参考訳(メタデータ) (2024-08-29T11:51:41Z) - Fine-grained Speech Sentiment Analysis in Chinese Psychological Support Hotlines Based on Large-scale Pre-trained Model [12.942304409369747]
我々は,大規模事前学習モデルを用いた否定的感情認識モデルと細粒度多ラベル分類モデルを開発した。
実験の結果, 負の感情認識モデルでは最大76.96%のF1スコアが得られることがわかった。
論文 参考訳(メタデータ) (2024-05-07T08:53:25Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
ストレスと抑うつは日々のタスクにおけるエンゲージメントに影響を与え、彼らの相互作用を理解する必要性を強調します。
この調査は、ストレス、抑うつ、エンゲージメントを分析する計算手法を同時に探求した最初のものである。
論文 参考訳(メタデータ) (2024-03-09T11:16:09Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
既存のアプローチは、苦痛の感情の原因を無視します。
彼らは、話者間の相互作用における感情的ダイナミクスよりも、探究者自身の精神状態に焦点を当てている。
本稿では、まず、苦痛の感情要因と、その原因によって引き起こされる感情効果を認識する新しいフレームワークCauESCを提案する。
論文 参考訳(メタデータ) (2024-01-31T11:30:24Z) - Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted
Outcomes to Analyze Longitudinal Social Media Data [2.76101452577748]
新型コロナウイルスのパンデミックは世界中でメンタルヘルスの危機をエスカレートしている。
自殺は、恥、虐待、放棄、うつ病のような精神状態などの社会的要因によって引き起こされる。
これらの状況が発展するにつれて、自殺的思考の兆候がソーシャルメディアの相互作用に現れる可能性がある。
論文 参考訳(メタデータ) (2023-12-13T17:15:12Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - NLP meets psychotherapy: Using predicted client emotions and
self-reported client emotions to measure emotional coherence [44.82634301507483]
感情経験と感情表現の一貫性は、顧客にとって重要であると考えられる。
セラピーにおける感情の主観的経験と感情表現の心電図について検討した研究はない。
本研究は、トランスフォーマーに基づく感情認識モデルから感情予測を用いて感情コヒーレンスを研究するエンド・ツー・エンドのアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-22T14:28:41Z) - Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks [43.2802002858859]
本稿では,語彙に基づく感情スコアと潜在トピックを用いたテキスト表現を強化する。
本研究は,自殺思考と精神障害を関連するリスク指標を用いて検出する関係ネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-16T11:18:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。