論文の概要: Distributed Evolution of Deep Autoencoders
- arxiv url: http://arxiv.org/abs/2004.07607v1
- Date: Thu, 16 Apr 2020 11:31:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 21:22:01.328726
- Title: Distributed Evolution of Deep Autoencoders
- Title(参考訳): ディープオートエンコーダの分散進化
- Authors: Jeff Hajewski, Suely Oliveira, and Xiaoyu Xing
- Abstract要約: 本稿では、効率的な進化アルゴリズムを用いてモジュラーオートエンコーダを設計する分散システムを提案する。
本システムの有効性を,多様体学習と画像復調の課題に適用した。
- 参考スコア(独自算出の注目度): 1.7444066202370399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoencoders have seen wide success in domains ranging from feature selection
to information retrieval. Despite this success, designing an autoencoder for a
given task remains a challenging undertaking due to the lack of firm intuition
on how the backing neural network architectures of the encoder and decoder
impact the overall performance of the autoencoder. In this work we present a
distributed system that uses an efficient evolutionary algorithm to design a
modular autoencoder. We demonstrate the effectiveness of this system on the
tasks of manifold learning and image denoising. The system beats random search
by nearly an order of magnitude on both tasks while achieving near linear
horizontal scaling as additional worker nodes are added to the system.
- Abstract(参考訳): オートエンコーダは機能選択から情報検索まで幅広い領域で成功を収めている。
この成功にもかかわらず、与えられたタスクのためのオートエンコーダの設計は、エンコーダとデコーダのバックニューラルネットワークアーキテクチャがオートエンコーダ全体のパフォーマンスにどのように影響するかという明確な直感が欠如しているため、依然として困難な作業である。
本稿では,モジュラーオートエンコーダの設計に効率的な進化アルゴリズムを用いた分散システムを提案する。
本システムの有効性を,多様体学習と画像復調の課題に適用した。
このシステムは、2つのタスクでランダム検索をほぼ1桁上回り、さらにワーカノードを追加してリニア水平スケーリングを実現している。
関連論文リスト
- Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Think Twice before Driving: Towards Scalable Decoders for End-to-End
Autonomous Driving [74.28510044056706]
既存のメソッドは通常、分離されたエンコーダ-デコーダパラダイムを採用する。
本研究は,この問題を2つの原則で緩和することを目的としている。
まず、エンコーダの特徴に基づいて、粗い将来の位置と行動を予測する。
そして、その位置と動作を条件に、将来のシーンを想像して、それに従って運転した場合にその影響を確認する。
論文 参考訳(メタデータ) (2023-05-10T15:22:02Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - Autoencoding Video Latents for Adversarial Video Generation [0.0]
AVLAEは2ストリームの遅延オートエンコーダであり、ビデオ配信は敵の訓練によって学習される。
提案手法は, 発生器の明示的な構造構成を伴わずとも, 動きや外見の符号を乱すことを学習できることを実証する。
論文 参考訳(メタデータ) (2022-01-18T11:42:14Z) - Sparsity and Sentence Structure in Encoder-Decoder Attention of
Summarization Systems [38.672160430296536]
トランスフォーマーモデルは、要約を含む幅広いNLPタスクにおいて最先端の結果を得た。
これまでの研究は、エンコーダの二次的自己保持機構という、重要なボトルネックに重点を置いてきた。
この研究はトランスのエンコーダ・デコーダのアテンション機構に焦点を当てている。
論文 参考訳(メタデータ) (2021-09-08T19:32:42Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
動的ニューラル表現デコーダ(NRD)と呼ばれる新しいデコーダを提案する。
エンコーダの出力上の各位置がセマンティックラベルの局所的なパッチに対応するので、この研究では、これらの局所的なパッチをコンパクトなニューラルネットワークで表現する。
このニューラル表現により、意味ラベル空間に先行する滑らかさを活用することができ、デコーダをより効率的にすることができる。
論文 参考訳(メタデータ) (2021-07-30T04:50:56Z) - Latent Code-Based Fusion: A Volterra Neural Network Approach [21.25021807184103]
最近導入されたVolterra Neural Networks(VNN)を用いた深層構造エンコーダを提案する。
提案手法は,cnnベースのオートエンコーダに対して,より頑健な分類性能を持つサンプル複雑性を示す。
論文 参考訳(メタデータ) (2021-04-10T18:29:01Z) - A Learning-Based Approach to Address Complexity-Reliability Tradeoff in
OS Decoders [32.35297363281744]
本稿では,人工ニューラルネットワークを用いて順序統計に基づくデコーダの必要な順序を予測することで,平均的複雑性やデコーダの遅延を低減できることを示した。
論文 参考訳(メタデータ) (2021-03-05T18:22:20Z) - Training Stacked Denoising Autoencoders for Representation Learning [0.0]
高次元データの強力な表現を学習できるニューラルネットワークのクラスであるstacked autoencoderを実装した。
本稿では,自動エンコーダの教師なし学習のための勾配降下と,勾配情報を利用した新しい遺伝的アルゴリズムに基づくアプローチについて述べる。
論文 参考訳(メタデータ) (2021-02-16T08:18:22Z) - NAS-Count: Counting-by-Density with Neural Architecture Search [74.92941571724525]
ニューラルアーキテクチャサーチ(NAS)を用いたカウントモデルの設計を自動化する
エンド・ツー・エンドの検索エンコーダ・デコーダアーキテクチャであるAutomatic Multi-Scale Network(AMSNet)を導入する。
論文 参考訳(メタデータ) (2020-02-29T09:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。