Detecting many-body Bell non-locality by solving Ising models
- URL: http://arxiv.org/abs/2004.07796v2
- Date: Sat, 10 Apr 2021 06:34:33 GMT
- Title: Detecting many-body Bell non-locality by solving Ising models
- Authors: Ir\'en\'ee Fr\'erot and Tommaso Roscilde
- Abstract summary: We show that an arbitrary set of quantum data is compatible with a local theory, if not, it delivers a many-body Bell inequality violated by the quantum data.
We use our approach to unveil new many-body Bell inequalities, violated by suitable measurements on paradigmatic quantum states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bell non-locality represents the ultimate consequence of quantum
entanglement, fundamentally undermining the classical tenet that
spatially-separated degrees of freedom possess objective attributes
independently of the act of their measurement. Despite its importance, probing
Bell non-locality in many-body systems is considered to be a formidable
challenge, with a computational cost scaling exponentially with system size.
Here we propose and validate an efficient variational scheme, based on the
solution of inverse classical Ising problems, which in polynomial time can
probe whether an arbitrary set of quantum data is compatible with a local
theory; and, if not, it delivers a many-body Bell inequality violated by the
quantum data. We use our approach to unveil new many-body Bell inequalities,
violated by suitable measurements on paradigmatic quantum states (the
low-energy states of Heisenberg antiferromagnets), paving the way to systematic
Bell tests in the many-body realm.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Bell inequalities as a tool to probe quantum chaos [0.0]
We explore a possible connection between the presence of nonlocality and quantum chaos.
Our work suggests an intriguing connection between Bell nonlocality, quantum chaos and random matrix theory.
arXiv Detail & Related papers (2024-06-17T17:41:21Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Scalable Bell inequalities for graph states of arbitrary prime local
dimension and self-testing [0.0]
Bell nonlocality -- the existence of quantum correlations that cannot be explained by classical means -- is one of the most striking features of quantum mechanics.
This work provides a general construction of Bell inequalities maximally violated by graph states of any prime local dimension.
We analytically determine their maximal quantum violation, a number of high relevance for device-independent applications of Bell inequalities.
arXiv Detail & Related papers (2022-12-14T09:46:27Z) - Genuine Bell locality and nonlocality in the networks [0.0]
Local hidden variables are strictly distributed in the specific observers rather than the whole ones.
Moreors are involved in the proposed linear and non-linear Bell-type inequalities.
How entanglement swapping replaces the joint measurements in the Bell tests is demonstrated.
arXiv Detail & Related papers (2022-09-23T04:23:16Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Bell nonlocality in networks [62.997667081978825]
Bell's theorem proves that quantum theory is inconsistent with local physical models.
In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments.
This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
arXiv Detail & Related papers (2021-04-21T18:00:48Z) - Quantum Bell Nonlocality is Entanglement [10.628932392896374]
Bell nonlocality describes a manifestation of quantum mechanics that cannot be explained by any local hidden variable model.
We develop a dynamical framework in which quantum Bell nonlocality emerges as special form of entanglement.
arXiv Detail & Related papers (2020-12-12T23:02:06Z) - Bilocal Bell inequalities violated by the quantum Elegant Joint
Measurement [0.0]
We investigate the simplest network, known as the bilocality scenario.
We report noise-tolerant quantum correlations that elude bilocal variable models.
We pave the way for an experimental realisation by presenting a simple two-qubit quantum circuit.
arXiv Detail & Related papers (2020-06-30T11:32:26Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.