Long-Range Coherence and Multiple Steady States in a Lossy Qubit Array
- URL: http://arxiv.org/abs/2004.07981v2
- Date: Mon, 30 Nov 2020 02:21:16 GMT
- Title: Long-Range Coherence and Multiple Steady States in a Lossy Qubit Array
- Authors: Shovan Dutta and Nigel R. Cooper
- Abstract summary: We show that a simple experimental setting of a locally pumped and lossy array of two-level quantum systems can stabilize states with strong long-range coherence.
We show there is an extensive set of steady-state density operators, from minimally to maximally entangled.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that a simple experimental setting of a locally pumped and lossy
array of two-level quantum systems can stabilize states with strong long-range
coherence. Indeed, by explicit analytic construction, we show there is an
extensive set of steady-state density operators, from minimally to maximally
entangled, despite this being an interacting open many-body problem. Such
nonequilibrium steady states arise from a hidden symmetry that stabilizes Bell
pairs over arbitrarily long distances, with unique experimental signatures. We
demonstrate a protocol by which one can selectively prepare these states using
dissipation. Our findings are accessible in present-day experiments.
Related papers
- Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Regression of high dimensional angular momentum states of light [47.187609203210705]
We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
arXiv Detail & Related papers (2022-06-20T16:16:48Z) - Dissipative preparation of fractional Chern insulators [3.3234256205258084]
We show how Laughlin states can be to good approximation prepared in a dissipative fashion from arbitrary initial states.
We observe a certain robustness regarding the overlap of the steady state with fractional quantum Hall states for experimentally well-controlled flux densities.
arXiv Detail & Related papers (2021-08-23T18:00:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode
states [0.0]
Correlations of two-party $(N, textvs,1)$-mode states are examined by using the variances of a pair of suitable EPR-like observables.
The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability.
arXiv Detail & Related papers (2021-07-02T13:11:00Z) - Certifying Multilevel Coherence in the Motional State of a Trapped Ion [0.38813406044213633]
coherent superposition of three motional Fock states of a single trapped ion is experimentally certified.
This demonstrates that high-level coherence can be verified and investigated with simple, nonideal control methods.
arXiv Detail & Related papers (2021-06-24T12:05:29Z) - Symmetry-resolved entanglement detection using partial transpose moments [1.1796902300802672]
We propose an ordered set of experimentally accessible conditions for detecting entanglement in mixed states.
Remarkably, the union of all moment inequalities reproduces the Peres-Horodecki criterion for detecting entanglement.
Exploiting symmetries can help to further improve their detection capabilities.
arXiv Detail & Related papers (2021-03-12T18:13:39Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Constructing Multipartite Bell inequalities from stabilizers [21.98685929768227]
We propose a systematical framework to construct Bell inequalities from stabilizers maximally violated by general stabilizer states.
We show that the constructed Bell inequalities can self-test any stabilizer state which is essentially device-independent.
Our framework can not only inspire more fruitful multipartite Bell inequalities from conventional verification methods, but also pave the way for their practical applications.
arXiv Detail & Related papers (2020-02-05T16:07:11Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.