Preparation of cat states in many-body eigenbasis via non-local measurement
- URL: http://arxiv.org/abs/2507.00199v1
- Date: Mon, 30 Jun 2025 19:08:06 GMT
- Title: Preparation of cat states in many-body eigenbasis via non-local measurement
- Authors: Ruoyu Yin, Hongzheng Zhao,
- Abstract summary: We propose to periodically interrupt the many-body evolution by precisely removing a given many-body Fock state through a non-local measurement.<n>We show that a state manifold survives the removal, allowing us to filter the system and generate a coherent superposition within this manifold at long times.<n>Our work provides new insight into quantum state preparation via non-local measurements using tools available in current quantum simulators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Engineered dissipation offers a promising route to prepare correlated quantum many-body states that are otherwise difficult to access using purely unitary protocols. However, creating superpositions of multiple many-body eigenstates with tunable properties remains a major challenge. We propose to periodically interrupt the many-body evolution by precisely removing a given many-body Fock state through a non-local post-selected measurement protocol. Upon tuning the measurement period, we show that a dark state manifold survives the removal, allowing us to filter the system and generate a coherent superposition within this manifold at long times. As a testbed, we study a non-integrable spin-1 XY chain featuring a solvable family of eigenstates that can differ macroscopically in quasi-particle excitations. Our protocol generates tunable superpositions of these eigenstates, including the spin-1 Greenberger-Horne-Zeilinger state and a generalized variant with tunable spatiotemporal order. Under perturbations, the system exhibits an exceptionally long-lived metastable regime where the engineered superpositions remain robust. Our work provides new insight into quantum state preparation via non-local measurements using tools available in current quantum simulators.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Enhancing Quantum Metrology by Quantum Resonance Dynamics [0.6963971634605796]
Quantum effects in metrology can enhance measurement precision from the so-called standard quantum limit to the Heisenberg Limit.<n>In this Letter, we propose a protocol that can circumvent a number of known obstacles and still make good use of time.<n>The proposed protocol can be tested on available experimental platforms.
arXiv Detail & Related papers (2025-02-03T15:53:19Z) - Symmetric tensor scars with tunable entanglement from volume to area law [0.0]
We study the construction of highly energetic eigenstates with tunable long-range entanglement.<n>We find many exact zero-energy eigenstates for a class of non-integrable spin-1/2 Hamiltonians with two-body correlations.<n>This framework has a natural extension to higher dimensions, where entangled states controlled by lattice geometry and internal symmetries can result in new classes of correlated out-of-equilibrium quantum matter.
arXiv Detail & Related papers (2025-01-23T19:00:03Z) - Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Manybody Interferometry of Quantum Fluids [0.19528996680336308]
'Manybody Ramsey interferometry' combines adiabatic state preparation and Ramsey spectroscopy.
This work opens new avenues for characterizing manybody states, paving the way for quantum computers to efficiently probe quantum matter.
arXiv Detail & Related papers (2023-09-11T18:01:17Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Microscopic dynamics and an effective Landau-Zener transition in the
quasi-adiabatic preparation of spatially ordered states of Rydberg
excitations [0.0]
We study the adiabatic preparation of spatially-ordered Rydberg excitations of atoms in finite one-dimensional lattices by frequency-chirped laser pulses.
Our aims are to unravel the microscopic mechanism of the phase transition from the unexcited state of atoms to the antiferromagnetic-like state of Rydberg excitations.
arXiv Detail & Related papers (2021-11-29T14:32:30Z) - Probing infinite many-body quantum systems with finite-size quantum
simulators [0.0]
We propose a protocol that makes optimal use of a given finite-size simulator by directly preparing, on its bulk region, a mixed state.
For systems of free fermions in one and two spatial dimensions, we illustrate and explain the underlying physics.
For the example of a non-integrable extended Su-Schrieffer-Heeger model, we demonstrate that our protocol enables a more accurate study of QPTs.
arXiv Detail & Related papers (2021-08-27T16:27:46Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Long-Range Coherence and Multiple Steady States in a Lossy Qubit Array [0.0]
We show that a simple experimental setting of a locally pumped and lossy array of two-level quantum systems can stabilize states with strong long-range coherence.
We show there is an extensive set of steady-state density operators, from minimally to maximally entangled.
arXiv Detail & Related papers (2020-04-16T22:36:22Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.