A modified deep convolutional neural network for detecting COVID-19 and
pneumonia from chest X-ray images based on the concatenation of Xception and
ResNet50V2
- URL: http://arxiv.org/abs/2004.08052v2
- Date: Tue, 4 May 2021 01:14:11 GMT
- Title: A modified deep convolutional neural network for detecting COVID-19 and
pneumonia from chest X-ray images based on the concatenation of Xception and
ResNet50V2
- Authors: Mohammad Rahimzadeh, Abolfazl Attar
- Abstract summary: We have trained several deep convolutional networks with introduced training techniques for classifying X-ray images into three classes: normal, pneumonia, and COVID-19.
Our data contains 180 X-ray images that belong to persons infected with COVID-19.
The average accuracy of the proposed network for detecting COVID-19 cases is 99.50%, and the overall average accuracy for all classes is 91.4%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we have trained several deep convolutional networks with
introduced training techniques for classifying X-ray images into three classes:
normal, pneumonia, and COVID-19, based on two open-source datasets. Our data
contains 180 X-ray images that belong to persons infected with COVID-19, and we
attempted to apply methods to achieve the best possible results. In this
research, we introduce some training techniques that help the network learn
better when we have an unbalanced dataset (fewer cases of COVID-19 along with
more cases from other classes). We also propose a neural network that is a
concatenation of the Xception and ResNet50V2 networks. This network achieved
the best accuracy by utilizing multiple features extracted by two robust
networks. For evaluating our network, we have tested it on 11302 images to
report the actual accuracy achievable in real circumstances. The average
accuracy of the proposed network for detecting COVID-19 cases is 99.50%, and
the overall average accuracy for all classes is 91.4%.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray
Images using Convolutional Neural Networks [0.0]
COVID-19 (coronavirus) is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
The virus was first identified in mid-December 2019 in the Hubei province of Wuhan, China.
It has spread throughout the planet with more than 75.5 million confirmed cases and more than 1.67 million deaths.
arXiv Detail & Related papers (2022-01-24T21:12:25Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Randomly Initialized Convolutional Neural Network for the Recognition of
COVID-19 using X-ray Images [0.0]
coronavirus disease (COVID-19) has been declared a worldwide pandemic.
One potential solution to detect COVID-19 is by analyzing the chest X-ray images using Deep Learning (DL) models.
In this study, we propose a novel randomly CNN architecture for the recognition of COVID-19.
The proposed CNN model yields encouraging results with 94% and 99% of accuracy for COVIDx and enhanced COVID-19 dataset, respectively.
arXiv Detail & Related papers (2021-05-17T23:40:37Z) - Deep learning for COVID-19 diagnosis based feature selection using
binary differential evolution algorithm [1.332091725929965]
The new Coronavirus is spreading rapidly and has taken the lives of many people so far.
Deep Convolution neural networks are a powerful tool in classifying images.
Our results demonstrate the suggested approach is better than recent studies on COVID-19 detection with X-ray images.
arXiv Detail & Related papers (2021-04-15T07:12:58Z) - FLANNEL: Focal Loss Based Neural Network Ensemble for COVID-19 Detection [61.04937460198252]
We construct the X-ray imaging data from 2874 patients with four classes: normal, bacterial pneumonia, non-COVID-19 viral pneumonia, and COVID-19.
To identify COVID-19, we propose a Focal Loss Based Neural Ensemble Network (FLANNEL)
FLANNEL consistently outperforms baseline models on COVID-19 identification task in all metrics.
arXiv Detail & Related papers (2020-10-30T03:17:31Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from
Radiographs [1.9798034349981157]
We present an accurate Convolutional Neural Network framework for differentiating COVID19 cases from other pneumonia cases.
This work presents a 3-step technique to fine-tune a pre-trained ResNet-50 architecture to improve model performance.
This model can help in the early screening of COVID19 cases and help reduce the burden on healthcare systems.
arXiv Detail & Related papers (2020-03-31T17:42:28Z) - Automated Methods for Detection and Classification Pneumonia based on
X-Ray Images Using Deep Learning [0.0]
We show that fine-tuned version of Resnet50, MobileNet_V2 and Inception_Resnet_V2 show highly satisfactory performance with rate of increase in training and validation accuracy (more than 96% of accuracy)
Unlike CNN, Xception, VGG16, VGG19, Inception_V3 and DenseNet201 display low performance (more than 84% accuracy)
arXiv Detail & Related papers (2020-03-31T16:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.