The germanium quantum information route
- URL: http://arxiv.org/abs/2004.08133v1
- Date: Fri, 17 Apr 2020 09:15:36 GMT
- Title: The germanium quantum information route
- Authors: Giordano Scappucci, Christoph Kloeffel, Floris A. Zwanenburg, Daniel
Loss, Maksym Myronov, Jian-Jun Zhang, Silvano De Franceschi, Georgios
Katsaros, Menno Veldhorst
- Abstract summary: We introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective.
We examine the material science progress underpinning germanium-based planar heterostructures and nanowires.
We conclude by identifying the most promising prospects toward scalable quantum information processing.
- Score: 2.449694738547425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the worldwide endeavor for disruptive quantum technologies, germanium is
emerging as a versatile material to realize devices capable of encoding,
processing, or transmitting quantum information. These devices leverage special
properties of the germanium valence-band states, commonly known as holes, such
as their inherently strong spin-orbit coupling and the ability to host
superconducting pairing correlations. In this Review, we initially introduce
the physics of holes in low-dimensional germanium structures with key insights
from a theoretical perspective. We then examine the material science progress
underpinning germanium-based planar heterostructures and nanowires. We review
the most significant experimental results demonstrating key building blocks for
quantum technology, such as an electrically driven universal quantum gate set
with spin qubits in quantum dots and superconductor-semiconductor devices for
hybrid quantum systems. We conclude by identifying the most promising prospects
toward scalable quantum information processing.
Related papers
- Quantum Entanglement in a Diluted Magnetic Semiconductor Quantum Dot [0.0]
We investigate entanglement in a diluted magnetic semiconductor quantum dot, crucial for quantum technologies.
Our analysis involves defining wavefunctions, employing density matrix operators, and measuring entanglement entropy.
Numerical assessments reveal few promising pairs among various quantum dot combinations that exhibit significant entanglement.
arXiv Detail & Related papers (2024-03-11T08:57:10Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Diamond Integrated Quantum Photonics: A Review [0.33827079164159196]
Integrated quantum photonics devices in diamond have tremendous potential for many quantum applications.
These devices benefit from diamond's combination of exceptional thermal, optical, and mechanical properties.
arXiv Detail & Related papers (2022-07-18T18:00:07Z) - Towards real-world quantum networks: a review [3.454055792111304]
Quantum networks play an extremely important role in quantum information science.
One of the key challenges for implementing a quantum network is to distribute entangled flying qubits to spatially separated nodes.
Dedicated efforts around the world for more than twenty years have resulted in both major theoretical and experimental progress towards entangling quantum nodes.
arXiv Detail & Related papers (2022-01-13T05:53:13Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Quantum computing with neutral atoms [0.0]
We review the main characteristics of neutral atom quantum processors from atoms / qubits to application interfaces.
We show how applications ranging from optimization challenges to simulation of quantum systems can be explored.
We give evidence of the intrinsic scalability of neutral atom quantum processors in the 100-1,000 qubits range.
arXiv Detail & Related papers (2020-06-22T15:09:01Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.