Towards real-world quantum networks: a review
- URL: http://arxiv.org/abs/2201.04802v1
- Date: Thu, 13 Jan 2022 05:53:13 GMT
- Title: Towards real-world quantum networks: a review
- Authors: Shi-Hai Wei, Bo Jing, Xue-Ying Zhang, Jin-Yu Liao, Chen-Zhi Yuan,
Bo-Yu Fan, Chen Lyu, Dian-Li Zhou, You Wang, Guang-Wei Deng, Hai-Zhi Song,
Daniel Oblak, Guang-Can Guo, Qiang Zhou
- Abstract summary: Quantum networks play an extremely important role in quantum information science.
One of the key challenges for implementing a quantum network is to distribute entangled flying qubits to spatially separated nodes.
Dedicated efforts around the world for more than twenty years have resulted in both major theoretical and experimental progress towards entangling quantum nodes.
- Score: 3.454055792111304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks play an extremely important role in quantum information
science, with application to quantum communication, computation, metrology and
fundamental tests. One of the key challenges for implementing a quantum network
is to distribute entangled flying qubits to spatially separated nodes, at which
quantum interfaces or transducers map the entanglement onto stationary qubits.
The stationary qubits at the separated nodes constitute quantum memories
realized in matter while the flying qubits constitute quantum channels realized
in photons. Dedicated efforts around the world for more than twenty years have
resulted in both major theoretical and experimental progress towards entangling
quantum nodes and ultimately building a global quantum network. Here, we review
the development of quantum networks and the experimental progress over the past
two decades leading to the current state of the art for generating entanglement
of quantum nodes based on various physical systems such as single atoms, cold
atomic ensembles, trapped ions, diamonds with Nitrogen-Vacancy centers,
solid-state host doped with rare-earth ions, etc. Along the way we discuss the
merits and compare the potential of each of these systems towards realizing a
quantum network.
Related papers
- Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum networks with neutral atom processing nodes [0.42970700836450487]
Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science.
Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks.
We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes.
arXiv Detail & Related papers (2023-04-04T19:34:13Z) - Quantum NETwork: from theory to practice [9.506954148435801]
We aim to provide an up-to-date review of the field of quantum networks from both theoretical and experimental perspectives.
We introduce a newly developed quantum network toolkit to facilitate the exploration and evaluation of innovative ideas.
arXiv Detail & Related papers (2022-12-02T15:05:25Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Quantum Communication Using Semiconductor Quantum Dots [0.0]
Review focuses on implementations of, and building blocks for, quantum communication using quantum-light sources based on epitaxial semiconductor quantum dots.
Recent progress towards quantum-secured communication networks as well as building blocks thereof is summarized.
arXiv Detail & Related papers (2021-08-31T14:32:34Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Heralding Quantum Entanglement between Two Room-Temperature Atomic
Ensembles [7.489722736943663]
We report the realization of quantum entanglement between two atomic ensembles at room temperature.
We strongly verify the existence of a single excitation delocalized in two atomic ensembles.
Remarkably, the heralded quantum entanglement of atomic ensembles can be operated with the feature of delay-choice.
arXiv Detail & Related papers (2020-07-21T17:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.