論文の概要: Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial
Vehicles
- arxiv url: http://arxiv.org/abs/2004.08206v2
- Date: Wed, 13 May 2020 11:42:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 13:25:03.572146
- Title: Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial
Vehicles
- Title(参考訳): 無人航空機からの航空画像による車両位置推定
- Authors: Friedrich Kruber, Eduardo S\'anchez Morales, Samarjit Chakraborty,
Michael Botsch
- Abstract要約: この研究は、航空画像から正確な車両の位置を推定する過程を記述する。
この目的のために最先端のディープニューラルネットワークMask-RCNNが適用される。
平均20cmの精度は、飛行高度100m、フルHD解像度、フレーム単位の検出で達成できる。
- 参考スコア(独自算出の注目度): 4.555256739812733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The availability of real-world data is a key element for novel developments
in the fields of automotive and traffic research. Aerial imagery has the major
advantage of recording multiple objects simultaneously and overcomes
limitations such as occlusions. However, there are only few data sets
available. This work describes a process to estimate a precise vehicle position
from aerial imagery. A robust object detection is crucial for reliable results,
hence the state-of-the-art deep neural network Mask-RCNN is applied for that
purpose. Two training data sets are employed: The first one is optimized for
detecting the test vehicle, while the second one consists of randomly selected
images recorded on public roads. To reduce errors, several aspects are
accounted for, such as the drone movement and the perspective projection from a
photograph. The estimated position is comapared with a reference system
installed in the test vehicle. It is shown, that a mean accuracy of 20 cm can
be achieved with flight altitudes up to 100 m, Full-HD resolution and a
frame-by-frame detection. A reliable position estimation is the basis for
further data processing, such as obtaining additional vehicle state variables.
The source code, training weights, labeled data and example videos are made
publicly available. This supports researchers to create new traffic data sets
with specific local conditions.
- Abstract(参考訳): 実世界のデータの入手は、自動車と交通研究の分野における新しい発展の鍵となる要素である。
航空画像は複数の物体を同時に記録する大きな利点があり、閉塞などの制限を克服する。
しかし、利用可能なデータセットはわずかである。
この研究は、航空画像から正確な車両の位置を推定する過程を記述する。
信頼性の高い結果には堅牢なオブジェクト検出が不可欠であるため、最先端のディープニューラルネットワークであるMask-RCNNが適用される。
2つのトレーニングデータセットが採用されている: 1つは試験車両の検出に最適化され、もう1つは公道でランダムに選択された画像で構成されている。
誤りを減らすために、ドローンの動きや写真からの視点投影など、いくつかの側面が説明されている。
推定位置は、試験車両に搭載された基準システムと照合される。
その結果,100mまでの飛行高度,フルhd解像度,フレームバイフレーム検出により,平均20cmの精度を達成できた。
信頼性のある位置推定は、追加の車両状態変数を取得するなど、さらなるデータ処理の基盤となる。
ソースコード、トレーニングウェイト、ラベル付きデータ、サンプルビデオが公開されている。
これにより、研究者は特定のローカル条件で新しいトラフィックデータセットを作成することができる。
関連論文リスト
- XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
本稿では,自律走行シミュレーションに特化して設計された新しい駆動ビュー合成データセットとベンチマークを提案する。
データセットには、トレーニング軌跡から1-4mずれて取得した画像のテストが含まれているため、ユニークなものだ。
我々は、フロントオンリーおよびマルチカメラ設定下で、既存のNVSアプローチを評価するための最初の現実的なベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-26T14:00:21Z) - Nighttime Driver Behavior Prediction Using Taillight Signal Recognition
via CNN-SVM Classifier [2.44755919161855]
本研究の目的は、人間駆動車と自律車の両方のテールライトを特定し、夜間運転行動を予測する能力を高めることである。
提案モデルでは、道路の前方のテールライトを正確に検出するカスタム検出器が組み込まれている。
夜間の限られたデータに対処するため、昼間の画像をリアルな夜のイメージに変換するために、ユニークな画素ワイズ画像処理技術を実装した。
論文 参考訳(メタデータ) (2023-10-25T15:23:33Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Uncertainty-aware Vision-based Metric Cross-view Geolocalization [25.87104194833264]
地上画像と空中画像を用いて車両のポーズの確率分布を予測するエンド・ツー・エンドの微分モデルを提案する。
テストエリアからの地上データや空中データなしでも、最先端の技術を大きなマージンで改善する。
論文 参考訳(メタデータ) (2022-11-22T10:23:20Z) - SA-NET.v2: Real-time vehicle detection from oblique UAV images with use
of uncertainty estimation in deep meta-learning [0.0]
本稿では,小さなトレーニングデータセットと深層メタラーニングに基づく斜めUAV画像に対するリアルタイム車両検出の問題点について考察する。
SA-Net.v2は、SA-CNNをベースとしたリアルタイム車両検出手法である。
実験の結果、SA-Net.v2は時系列の斜めUAV画像で有望な性能を達成した。
論文 参考訳(メタデータ) (2022-08-04T09:08:47Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
交差点における車両の7DoF予測は,道路利用者間の潜在的な衝突を評価する上で重要な課題である。
交通監視カメラ用3次元物体検出装置の微調整を弱教師付きで行う手法を開発した。
提案手法は,自動運転車のデータセット上で最上位のモノクル3Dオブジェクト検出器と同等の精度で車両の7DoFの予測精度を推定する。
論文 参考訳(メタデータ) (2021-10-21T08:26:48Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - Artificial and beneficial -- Exploiting artificial images for aerial
vehicle detection [1.4528189330418975]
本研究では,2次元cad描画から作成した車両を人工的あるいは実際の背景に重ね合わせてトップダウン画像を生成する生成手法を提案する。
修正されたRetinaNetオブジェクト検出ネットワークによる実験では、これらの画像を小さな実世界のデータセットに追加することで、検出パフォーマンスが大幅に向上することを示しています。
論文 参考訳(メタデータ) (2021-04-07T11:06:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
我々は,4つのパブリックな車両データセットを活用することで,大規模車両データセット(VabyNet)を構築することを提案する。
VehicleNetからより堅牢な視覚表現を学習するための、シンプルで効果的な2段階プログレッシブアプローチを設計する。
AICity Challengeのプライベートテストセットにおいて,最先端の精度86.07%mAPを実現した。
論文 参考訳(メタデータ) (2020-04-14T05:06:38Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
魚眼レンズを装着した校正単眼カメラを用いて3Dパラメータを推定するロバストな手法を提案する。
我々のアプローチでは、車両が90%以上の精度で、リアルタイムで距離を抑えることができる。
論文 参考訳(メタデータ) (2020-02-28T00:24:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。