論文の概要: Nighttime Driver Behavior Prediction Using Taillight Signal Recognition
via CNN-SVM Classifier
- arxiv url: http://arxiv.org/abs/2310.16706v1
- Date: Wed, 25 Oct 2023 15:23:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-10-26 14:02:17.234301
- Title: Nighttime Driver Behavior Prediction Using Taillight Signal Recognition
via CNN-SVM Classifier
- Title(参考訳): CNN-SVM分類器を用いたタイルライト信号認識による夜間運転行動予測
- Authors: Amir Hossein Barshooi and Elmira Bagheri
- Abstract要約: 本研究の目的は、人間駆動車と自律車の両方のテールライトを特定し、夜間運転行動を予測する能力を高めることである。
提案モデルでは、道路の前方のテールライトを正確に検出するカスタム検出器が組み込まれている。
夜間の限られたデータに対処するため、昼間の画像をリアルな夜のイメージに変換するために、ユニークな画素ワイズ画像処理技術を実装した。
- 参考スコア(独自算出の注目度): 2.44755919161855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to enhance the ability to predict nighttime driving behavior
by identifying taillights of both human-driven and autonomous vehicles. The
proposed model incorporates a customized detector designed to accurately detect
front-vehicle taillights on the road. At the beginning of the detector, a
learnable pre-processing block is implemented, which extracts deep features
from input images and calculates the data rarity for each feature. In the next
step, drawing inspiration from soft attention, a weighted binary mask is
designed that guides the model to focus more on predetermined regions. This
research utilizes Convolutional Neural Networks (CNNs) to extract
distinguishing characteristics from these areas, then reduces dimensions using
Principal Component Analysis (PCA). Finally, the Support Vector Machine (SVM)
is used to predict the behavior of the vehicles. To train and evaluate the
model, a large-scale dataset is collected from two types of dash-cams and
Insta360 cameras from the rear view of Ford Motor Company vehicles. This
dataset includes over 12k frames captured during both daytime and nighttime
hours. To address the limited nighttime data, a unique pixel-wise image
processing technique is implemented to convert daytime images into realistic
night images. The findings from the experiments demonstrate that the proposed
methodology can accurately categorize vehicle behavior with 92.14% accuracy,
97.38% specificity, 92.09% sensitivity, 92.10% F1-measure, and 0.895 Cohen's
Kappa Statistic. Further details are available at
https://github.com/DeepCar/Taillight_Recognition.
- Abstract(参考訳): 本研究の目的は、人間駆動車と自律車の両方のテールライトを特定し、夜間運転行動を予測する能力を高めることである。
提案モデルでは、道路の前方のテールライトを正確に検出するカスタム検出器が組み込まれている。
検出器の開始時に学習可能な前処理ブロックが実装され、入力画像から深い特徴を抽出し、各特徴に対するデータラミリティを算出する。
次のステップでは、ソフトアテンションからインスピレーションを得て、重み付きバイナリマスクをデザインし、モデルを所定の領域に集中させる。
本研究では,CNNを用いてこれらの領域から特徴を抽出し,主成分分析(PCA)を用いて次元を縮小する。
最後に、車両の挙動を予測するためにSVM(Support Vector Machine)が使用される。
モデルを訓練し評価するために、フォード・モーター社の車両の後方から2種類のダッシュカメラとinsta360カメラから大規模データセットを収集する。
このデータセットには、昼間と夜間の両方でキャプチャされた12Kフレームが含まれている。
夜間の限られたデータに対処するため、昼間の画像をリアルな夜間画像に変換するために、ユニークな画素ワイズ画像処理技術を実装した。
実験の結果,提案手法は92.14%の精度,97.38%の特異性,92.09%の感度,92.10%のf1測定値,0.895のコーエンのkappa統計値で車両挙動を正確に分類できることがわかった。
詳細はhttps://github.com/DeepCar/Taillight_Recognition.comで確認できる。
関連論文リスト
- Vehicle Trajectory Prediction on Highways Using Bird Eye View
Representations and Deep Learning [0.5420492913071214]
本研究では,効率的な鳥の視線表示と畳み込みニューラルネットワークを用いた高速道路シナリオにおける車両軌跡の予測手法を提案する。
U-netモデルは予測カーネルとして選択され、画像から画像への回帰アプローチを用いてシーンの将来の視覚表現を生成する。
生成したグラフィカル表現から車の位置を抽出してサブピクセル解像度を実現する手法が実装されている。
論文 参考訳(メタデータ) (2022-07-04T13:39:46Z) - Monocular Vision-based Prediction of Cut-in Maneuvers with LSTM Networks [0.0]
本研究では,エゴレーンで発生する潜在的に危険なカットイン動作を予測する手法を提案する。
我々は、1台の車載RGBカメラのみを使用するコンピュータビジョンベースのアプローチに従う。
本アルゴリズムは,CNNに基づく車両検出・追跡ステップとLSTMに基づく操縦分類ステップから構成される。
論文 参考訳(メタデータ) (2022-03-21T02:30:36Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - 2nd Place Solution for Waymo Open Dataset Challenge - Real-time 2D
Object Detection [26.086623067939605]
本稿では,画像から2次元物体を検出するリアルタイム手法を提案する。
我々は、加速度RTを活用して、検出パイプラインの推論時間を最適化する。
我々のフレームワークはNvidia Tesla V100 GPU上で45.8ms/frameのレイテンシを実現する。
論文 参考訳(メタデータ) (2021-06-16T11:32:03Z) - Data-driven vehicle speed detection from synthetic driving simulator
images [0.440401067183266]
運転シミュレータから生成された合成画像を用いて車両の速度検出について検討する。
複数の速度、車両の種類や色、照明や気象条件に応じた可変性を持つ数千の画像を生成します。
CNN-GRUや3D-CNNなど,画像のシーケンスを出力速度(回帰)にマッピングする2つのアプローチについて検討した。
論文 参考訳(メタデータ) (2021-04-20T11:26:13Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z) - Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial
Vehicles [4.555256739812733]
この研究は、航空画像から正確な車両の位置を推定する過程を記述する。
この目的のために最先端のディープニューラルネットワークMask-RCNNが適用される。
平均20cmの精度は、飛行高度100m、フルHD解像度、フレーム単位の検出で達成できる。
論文 参考訳(メタデータ) (2020-04-17T12:29:40Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
魚眼レンズを装着した校正単眼カメラを用いて3Dパラメータを推定するロバストな手法を提案する。
我々のアプローチでは、車両が90%以上の精度で、リアルタイムで距離を抑えることができる。
論文 参考訳(メタデータ) (2020-02-28T00:24:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。