論文の概要: Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale
from Radiographs Using Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2004.08572v1
- Date: Sat, 18 Apr 2020 09:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 05:01:21.015258
- Title: Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale
from Radiographs Using Convolutional Neural Networks
- Title(参考訳): コンボリューションニューラルネットを用いたKellgren-Lawrenceスケールによる膝関節症の自動移植
- Authors: Sudeep Kondal, Viraj Kulkarni, Ashrika Gaikwad, Amit Kharat, Aniruddha
Pant
- Abstract要約: 本稿では,Kelgren-Lawrence(KL)スケールで膝関節X線写真を自動的に評価するための畳み込みニューラルネットワークを用いた新しい手法を提案する。
第1段階では物体検出モデルが画像の残りの部分から個々の膝を分割し,第2段階では回帰モデルが各膝をKLスケールで別々に評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The severity of knee osteoarthritis is graded using the 5-point
Kellgren-Lawrence (KL) scale where healthy knees are assigned grade 0, and the
subsequent grades 1-4 represent increasing severity of the affliction. Although
several methods have been proposed in recent years to develop models that can
automatically predict the KL grade from a given radiograph, most models have
been developed and evaluated on datasets not sourced from India. These models
fail to perform well on the radiographs of Indian patients. In this paper, we
propose a novel method using convolutional neural networks to automatically
grade knee radiographs on the KL scale. Our method works in two connected
stages: in the first stage, an object detection model segments individual knees
from the rest of the image; in the second stage, a regression model
automatically grades each knee separately on the KL scale. We train our model
using the publicly available Osteoarthritis Initiative (OAI) dataset and
demonstrate that fine-tuning the model before evaluating it on a dataset from a
private hospital significantly improves the mean absolute error from 1.09 (95%
CI: 1.03-1.15) to 0.28 (95% CI: 0.25-0.32). Additionally, we compare
classification and regression models built for the same task and demonstrate
that regression outperforms classification.
- Abstract(参考訳): 膝関節炎の重症度は、健常膝を0等級に割り当てる5点のケルグレン・ラーレンス(KL)尺度を用いて評価され、その後のグレード1〜4は、重症度の増加を表す。
近年、所定のラジオグラフからklグレードを自動的に予測できるモデルを開発するためのいくつかの方法が提案されているが、ほとんどのモデルはインドから出ていないデータセットに基づいて開発と評価されている。
これらのモデルは、インドの患者のX線写真でうまく機能しない。
本稿では,畳み込みニューラルネットワークを用いて膝x線をklスケールで自動的に評価する手法を提案する。
第1段階では物体検出モデルが画像の残りの部分から個々の膝を分割し,第2段階では回帰モデルが各膝をKLスケールで別々に評価する。
我々は,OAIデータセットを用いてモデルをトレーニングし,個人病院のデータセットで評価する前にモデルを微調整し,平均絶対誤差を1.09 (95% CI: 1.03-1.15) から 0.28 (95% CI: 0.25-0.32) に著しく改善することを示した。
さらに、同一タスク用に構築された分類モデルと回帰モデルを比較し、回帰が分類より優れていることを示す。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Deep Learning Models to Automate the Scoring of Hand Radiographs for Rheumatoid Arthritis [0.0]
シャープスコア(シャープスコア、英: Sharp score、SvdH)は、慢性関節リウマチ(RA)の臨床治験における損傷の定量化に広く用いられている放射線検査法である。
まず,手指のX線写真からSvdHのスコアとRAの重症度を推定できる自動パイプラインを開発した。
論文 参考訳(メタデータ) (2024-06-14T12:43:16Z) - Automatic hip osteoarthritis grading with uncertainty estimation from
computed tomography using digitally-reconstructed radiographs [5.910133714106733]
変形性股関節症(Hip OA)の重症度はCroweおよびKellgren-Lawrence分類を用いて分類されることが多い。
ディープ・ラーニング・モデルは2つのグレーティング・スキームを用いて病気の成績を予測するために訓練された。
モデルの精度は約0.65(ECA)と0.95(ONCA)である。
論文 参考訳(メタデータ) (2023-12-30T07:28:56Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
本研究はMOST研究のベースラインから被験者(被験者1832名,膝3276名)を抽出した。
PF関節領域は, 側膝X線上の自動ランドマーク検出ツール(BoneFinder)を用いて同定した。
年齢、性別、BMIおよびWOMACスコア、および大腿骨関節X線学的関節炎ステージ(KLスコア)の危険因子について
論文 参考訳(メタデータ) (2023-05-10T06:43:33Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - MAPPING: Model Average with Post-processing for Stroke Lesion
Segmentation [57.336056469276585]
我々は nnU-Net フレームワークに基づく脳卒中病変のセグメンテーションモデルを提案し, ストローク後の解剖学的トレースに応用する。
本手法は,2022年のMICCAI ATLAS Challengeにおいて,平均Diceスコアが0.6667,Lesion-wise F1スコアが0.5643,Simple Lesion Countスコアが4.5367,Volume differenceスコアが8804.9102であった。
論文 参考訳(メタデータ) (2022-11-11T14:17:04Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
本稿では,特定の患者に限られた発作サンプルから迅速に適応できるパーソナライズされた発作検出・分類フレームワークを提案する。
トレーニング患者の集合からグローバルモデルを学ぶメタGNNベースの分類器を訓練する。
本手法は, 未確認患者20回に限って, 精度82.7%, F1スコア82.08%を達成し, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-11-01T14:12:58Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
本稿では,KellgrenおよびLawrenceグレードの分類をX線から自動的に評価する,深層学習ベースのフレームワークであるOsteHRNetを提案する。
提案モデルでは,OAIデータセットのベースラインコホートにおいて,71.74%,0.311のMAEが最良である。
論文 参考訳(メタデータ) (2021-06-27T17:29:46Z) - Automated Detection of Patellofemoral Osteoarthritis from Knee Lateral
View Radiographs Using Deep Learning: Data from the Multicenter
Osteoarthritis Study (MOST) [3.609538870261841]
本論文では,PFOA(Automatic Patello大腿骨関節症)検出法を提案する。
膝側方X線写真から乳頭領域を訓練した深層学習モデルでは、患者特性や臨床評価に基づくモデルよりもPFOAの予測が優れています。
論文 参考訳(メタデータ) (2021-01-12T08:37:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。