論文の概要: Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation
- arxiv url: http://arxiv.org/abs/2004.08694v5
- Date: Mon, 28 Nov 2022 18:02:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 05:00:04.357095
- Title: Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation
- Title(参考訳): syn-qg: 質問生成のための構文と浅い意味規則
- Authors: Kaustubh D. Dhole and Christopher D. Manning
- Abstract要約: 我々は、宣言文を質問応答対に変換する透明な統語規則であるSynQGを開発した。
PropBankの引数記述とVerbNet状態述語を利用して、浅いセマンティックコンテンツを組み込む。
文法的不正確な質問を排除し,構文の流布性を改善するために,これらの構文規則のアウトプットを逆翻訳する。
- 参考スコア(独自算出の注目度): 49.671882751569534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question Generation (QG) is fundamentally a simple syntactic transformation;
however, many aspects of semantics influence what questions are good to form.
We implement this observation by developing SynQG, a set of transparent
syntactic rules leveraging universal dependencies, shallow semantic parsing,
lexical resources, and custom rules which transform declarative sentences into
question-answer pairs. We utilize PropBank argument descriptions and VerbNet
state predicates to incorporate shallow semantic content, which helps generate
questions of a descriptive nature and produce inferential and semantically
richer questions than existing systems. In order to improve syntactic fluency
and eliminate grammatically incorrect questions, we employ back-translation
over the output of these syntactic rules. A set of crowd-sourced evaluations
shows that our system can generate a larger number of highly grammatical and
relevant questions than previous QG systems and that back-translation
drastically improves grammaticality at a slight cost of generating irrelevant
questions.
- Abstract(参考訳): 質問生成(qg)は、基本的には単純な構文変換であるが、意味論の多くの側面は、どの質問が形式に良いかに影響する。
この観察は、普遍的な依存関係、浅いセマンティックパーシング、語彙資源、および宣言文を質問対に変換するカスタムルールを活用する透明な統語規則であるSynQGを開発することで実現される。
propbank の引数記述と verbnet 状態述語を用いて、浅い意味的コンテンツを取り込んで記述的性質の質問を生成し、既存のシステムよりも推論的かつ意味的にリッチな質問を生成する。
文法的不正確な質問を排除し,構文の流布性を改善するために,これらの構文規則のアウトプットを逆翻訳する。
クラウドソースによる評価の結果,我々のシステムは従来のQGシステムよりも文法的・関連性の高い質問を多く生成でき,バックトランスレーションは無関係な質問を生成するためのわずかなコストで文法性を劇的に向上させることがわかった。
関連論文リスト
- Elaborative Simplification as Implicit Questions Under Discussion [51.17933943734872]
本稿では,QUD フレームワークのレンズによる共同作業の簡略化について考察する。
本研究は,QUDを明示的にモデル化することで,作業の単純化と,作業内容と作業内容の関連性について,重要な理解が得られていることを示す。
論文 参考訳(メタデータ) (2023-05-17T17:26:16Z) - HPE:Answering Complex Questions over Text by Hybrid Question Parsing and
Execution [92.69684305578957]
テキストQAにおける質問解析と実行の枠組みを提案する。
提案したフレームワークは、トップダウンの質問パースとして、ボトムアップの回答バックトラックとみなすことができる。
MuSiQue,2WikiQA,HotpotQA,およびNQに関する実験により,提案した解析およびハイブリッド実行フレームワークが,教師付き,少数ショット,ゼロショット設定における既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-12T22:37:06Z) - Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering [26.997542897342164]
本稿では,中間表現を会話の手がかりとして捉え,生成するための新しいフレームワークCONVSR(CONVQA using Structured Representations)を提案する。
我々はQuACとCANARDのデータセット上でモデルをテストし、提案するフレームワークが標準的な質問書き直しモデルよりも優れたF1スコアを達成できることを実験結果により示す。
論文 参考訳(メタデータ) (2023-04-14T13:42:32Z) - Discourse Analysis via Questions and Answers: Parsing Dependency
Structures of Questions Under Discussion [57.43781399856913]
この研究は、談話分析にQUD(Language framework of Questions Under discussion)を採用する。
我々は、文間の関係を、徹底的なきめ細かい質問とは対照的に、自由形式の質問として特徴づける。
完全文書上の質問の依存関係構造を導出する第一種QUDを開発する。
論文 参考訳(メタデータ) (2022-10-12T03:53:12Z) - Automatic question generation based on sentence structure analysis using
machine learning approach [0.0]
本稿では,英語の非構造化テキストから事実質問を生成するための枠組みを紹介する。
文パターンに基づく従来の言語アプローチと、いくつかの機械学習手法を組み合わせる。
フレームワークには、生成された質問の品質を見積もる質問評価モジュールも含まれている。
論文 参考訳(メタデータ) (2022-05-25T14:35:29Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLMは、事前訓練されたLMとグラフニューラルネットワークの符号化された表現を、複数の層にわたるモダリティ相互作用操作で融合する新しいモデルである。
GreaseLMは、状況制約と構造化知識の両方の推論を必要とする問題に、より確実に答えることができる。
論文 参考訳(メタデータ) (2022-01-21T19:00:05Z) - Open-Retrieval Conversational Machine Reading [80.13988353794586]
会話機械読解では、システムは自然言語規則を解釈し、ハイレベルな質問に答え、フォローアップの明確化を問う必要がある。
既存の作業では、ルールテキストがユーザ毎の質問に対して提供されると仮定し、実際のシナリオにおいて必須の検索ステップを無視する。
本研究では,対話型機械読解のオープンリトリーバル設定を提案し,検討する。
論文 参考訳(メタデータ) (2021-02-17T08:55:01Z) - Knowledge-enriched, Type-constrained and Grammar-guided Question
Generation over Knowledge Bases [20.412744079015475]
知識ベース上の質問生成(KBQG)は、サブグラフに関する自然言語の質問を生成することを目的としている。
現在のエンコーダデコーダベースの手法、特に小さなサブグラフでは、大きな課題が2つ残っている。
我々は、KTGという、知識に富んだ、型に制約のある、文法に制約のあるKBQGモデルを提案する。
論文 参考訳(メタデータ) (2020-10-07T04:49:48Z) - SPARQA: Skeleton-based Semantic Parsing for Complex Questions over
Knowledge Bases [27.343078784035693]
本稿では,複雑な質問の高次構造を表現するために,新しいスケルトン文法を提案する。
BERTをベースとしたパースアルゴリズムを用いたこの厳密な形式化は、下流の微細なセマンティック解析の精度を向上させるのに役立つ。
このアプローチは、いくつかのデータセットで有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-03-31T05:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。