論文の概要: Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering
- arxiv url: http://arxiv.org/abs/2304.07125v1
- Date: Fri, 14 Apr 2023 13:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 13:26:32.264568
- Title: Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering
- Title(参考訳): 会話の継続:構造化表現を用いて会話質問回答の依存性を解消する
- Authors: Munazza Zaib and Quan Z. Sheng and Wei Emma Zhang and Adnan Mahmood
- Abstract要約: 本稿では,中間表現を会話の手がかりとして捉え,生成するための新しいフレームワークCONVSR(CONVQA using Structured Representations)を提案する。
我々はQuACとCANARDのデータセット上でモデルをテストし、提案するフレームワークが標準的な質問書き直しモデルよりも優れたF1スコアを達成できることを実験結果により示す。
- 参考スコア(独自算出の注目度): 26.997542897342164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Having an intelligent dialogue agent that can engage in conversational
question answering (ConvQA) is now no longer limited to Sci-Fi movies only and
has, in fact, turned into a reality. These intelligent agents are required to
understand and correctly interpret the sequential turns provided as the context
of the given question. However, these sequential questions are sometimes left
implicit and thus require the resolution of some natural language phenomena
such as anaphora and ellipsis. The task of question rewriting has the potential
to address the challenges of resolving dependencies amongst the contextual
turns by transforming them into intent-explicit questions. Nonetheless, the
solution of rewriting the implicit questions comes with some potential
challenges such as resulting in verbose questions and taking conversational
aspect out of the scenario by generating self-contained questions. In this
paper, we propose a novel framework, CONVSR (CONVQA using Structured
Representations) for capturing and generating intermediate representations as
conversational cues to enhance the capability of the QA model to better
interpret the incomplete questions. We also deliberate how the strengths of
this task could be leveraged in a bid to design more engaging and eloquent
conversational agents. We test our model on the QuAC and CANARD datasets and
illustrate by experimental results that our proposed framework achieves a
better F1 score than the standard question rewriting model.
- Abstract(参考訳): 会話型質問応答(ConvQA)を行うインテリジェントな対話エージェントを持つことは、もはやSci-Fi映画に限らず、現実に変わった。
これらのインテリジェントエージェントは、与えられた質問のコンテキストとして提供されるシーケンシャルなターンを理解し、正しく解釈する必要がある。
しかし、これらのシーケンシャルな質問は暗黙に残され、アナフォラやエリプシスのような自然言語現象の解決を必要とすることがある。
質問を書き直すというタスクは、コンテキストの変化の中で依存関係を解決するという課題に対処できる可能性がある。
それでも、暗黙の質問を書き直すという解決策には、冗長な質問の結果や、自己完結した質問を生成することでシナリオから会話的側面を取り出すといった潜在的な課題が伴う。
本稿では,中間表現を会話の手がかりとして捉え,生成するための新しいフレームワークCONVSR(CONVQA using Structured Representations)を提案する。
また、より魅力的で雄弁な会話エージェントを設計するために、このタスクの強みをどのように活用するかも検討した。
我々は,quacおよびcanardデータセット上でモデルをテストするとともに,提案するフレームワークが標準質問書換えモデルよりも優れたf1スコアを達成できることを実験的に示す。
関連論文リスト
- Improving Question Generation with Multi-level Content Planning [70.37285816596527]
本稿では、与えられたコンテキストと回答から質問を生成する問題に対処し、特に拡張されたコンテキストをまたいだマルチホップ推論を必要とする質問に焦点をあてる。
具体的には、キーフレーズを同時に選択して完全な回答を生成するFA-modelと、生成した全回答を付加的な入力として取り込んだQ-modelの2つのコンポーネントを含む。
論文 参考訳(メタデータ) (2023-10-20T13:57:01Z) - HPE:Answering Complex Questions over Text by Hybrid Question Parsing and
Execution [92.69684305578957]
テキストQAにおける質問解析と実行の枠組みを提案する。
提案したフレームワークは、トップダウンの質問パースとして、ボトムアップの回答バックトラックとみなすことができる。
MuSiQue,2WikiQA,HotpotQA,およびNQに関する実験により,提案した解析およびハイブリッド実行フレームワークが,教師付き,少数ショット,ゼロショット設定における既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-12T22:37:06Z) - Modeling What-to-ask and How-to-ask for Answer-unaware Conversational
Question Generation [30.086071993793823]
What-to-askとHow-to-askは、回答を意識しない2つの主要な課題である。
本稿では,2段階CQGフレームワークであるSG-CQGを紹介する。
論文 参考訳(メタデータ) (2023-05-04T18:06:48Z) - Discourse Analysis via Questions and Answers: Parsing Dependency
Structures of Questions Under Discussion [57.43781399856913]
この研究は、談話分析にQUD(Language framework of Questions Under discussion)を採用する。
我々は、文間の関係を、徹底的なきめ細かい質問とは対照的に、自由形式の質問として特徴づける。
完全文書上の質問の依存関係構造を導出する第一種QUDを開発する。
論文 参考訳(メタデータ) (2022-10-12T03:53:12Z) - Conversational QA Dataset Generation with Answer Revision [2.5838973036257458]
本稿では,一節から質問に値するフレーズを抽出し,過去の会話を考慮し,それに対応する質問を生成する新しい枠組みを提案する。
本フレームワークでは,抽出した回答を質問生成後に修正し,その回答が一致した質問に正確に一致するようにした。
論文 参考訳(メタデータ) (2022-09-23T04:05:38Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
対話型オープンドメイン質問回答(MICQA)のための多面的改善フレームワークを提案する。
第一に、提案したKL分割に基づく正規化は、検索と解答のためのより良い質問理解をもたらすことができる。
第二に、追加されたポストランカモジュールは、より関連性の高いパスをトップにプッシュし、2アスペクトの制約で読者に選択できる。
第3に、十分に設計されたカリキュラム学習戦略は、訓練と推論の黄金の通路設定のギャップを効果的に狭め、黄金の通路支援なしで真の答えを見つけることを奨励する。
論文 参考訳(メタデータ) (2022-04-01T07:54:27Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
談話理解のためのモデルの構築と評価における重要な課題は、注釈付きデータの欠如である。
本稿では,ニュース文書の理解を目的としたスケーラブルなデータ収集を実現する新しいパラダイムを提案する。
得られたコーパスDCQAは、607の英語文書からなる22,430の質問応答ペアで構成されている。
論文 参考訳(メタデータ) (2021-11-01T04:50:26Z) - Asking It All: Generating Contextualized Questions for any Semantic Role [56.724302729493594]
本稿では,役割質問生成の課題について紹介する。
このタスクの2段階モデルを開発し、まず、各ロールに対する文脈に依存しない質問プロトタイプを作成する。
我々の評価は、述語と役割の大規模かつ広範な包括的領域に対して、多種多様でよく形成された質問を生成することを示す。
論文 参考訳(メタデータ) (2021-09-10T12:31:14Z) - Unified Questioner Transformer for Descriptive Question Generation in
Goal-Oriented Visual Dialogue [0.0]
現実世界について質問できる対話型人工知能の構築は、ビジョンと言語問題における最大の課題の1つだ。
我々はUnified Questioner Transformer (UniQer) と呼ばれる新しい問合せアーキテクチャを提案する。
我々は、CLEVR Askと呼ばれる目標指向の視覚対話タスクを構築し、質問者に対して説明的質問を生成する複雑なシーンを合成する。
論文 参考訳(メタデータ) (2021-06-29T16:36:34Z) - Learn to Resolve Conversational Dependency: A Consistency Training
Framework for Conversational Question Answering [14.382513103948897]
本稿では,会話の文脈を理解する上で,QAモデルの能力を高めるためにExCorD(会話依存の解決方法の明示的ガイダンス)を提案する。
実験では,QuACでは1.2F1,CANARDでは5.2F1,QAモデルでは1.2F1に改善した。
論文 参考訳(メタデータ) (2021-06-22T07:16:45Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。